SAMPM: CONHFNT

PERFECT

MAHPHENAHPICS

STID. VIIII
(Eng. Med.)

Target Publications ${ }^{\circ}$ Pvt. Ltd.

PERFECT Mathematics STD. VIII

Salient Features

- Written as per the new textbook.

E Exhaustive coverage of entire syllabus.

- Topic-wise distribution of textual questions and practice problems at the beginning of every chapter.
- Covers solutions to all Practice sets.

Q Includes additional activities for practice.

- Includes additional problems and MCQs for practice.
© Chapter-wise assessment for every chapter.
- Constructions drawn with accurate measurements.
- Includes Important formulae at the end of the book.
- Smart Check for Answer verification

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd.
No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

Creation of the 'Mathematics' book was a rollercoaster ride. We had a plethora of ideas, suggestions and decisions to ponder over. However, our basic premise was to keep this book in line with the new, improved syllabus and to provide students with an absolutely fresh material.

Mathematics : Std. VIII has been prepared as per the new syllabus which is more child-centric and focuses on active learning along-with making the process of education more enjoyable and interesting.

For better understanding of different types of questions, Topic-Wise Distribution of Textual Questions and Practice Problems have been provided at the beginning of every chapter. Before each practice set, short and easy explanation of different concepts with illustrations for better understanding is given. Solutions to Textual Questions and Examples are provided in a lucid manner.
'Smart Check' given to enable the students to cross-check their answers.
'Apply Your Knowledge' covers all the Textual Activities and Projects along with their answers.
'Multiple Choice Questions' and 'Additional Problems for Practice' include multiple unsolved problems for revision and in the process help the students to sharpen their problem solving skills. 'Solved examples' from textbook are also included in the book.

Every chapter ends with a 'Chapter Assessment'. This test stands as a testimony to the fact that the child has understood the chapter thoroughly.
'Activities for practice' includes additional activities along with their answers for the students to practice.

All the diagrams are neat and have proper labelling. The book has a unique feature that all the constructions are as per the scale.

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on : mail@targetpublications.org A book affects eternity; one can never tell where its influence stops.

Best of luck to all the aspirants!

Publisher
Edition: Second

Disclaimer

[^0](C) reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Activities for Practice

Activities for Practice: In this section we have provided multiple activities for practice in accordance with the latest paper pattern.

MULTiple Choice Questions FOR PRACTICE

Multiple Choice Questions: This section is provided for additional practice of Multiple Choice Questions.

ADDITIONAL PROBLEMS FOR Practice

Additional Problems for Practice, in this section we have provided ample practice problems for students.
Solved examples from textbook are indicated by " + ".

CHAPTER ASSESSMENT

Chapter Assessment covers questions from the chapter for self-evaluation purpose. This is our attempt to offer students with revision and help them assess their knowledge of each chapter.

IMPORTANT FORMULAE

Important Formulae given at the end of the book includes all the key formulae in the chapter.

It offers students a handy tool to solve problems and ace the last minute revision.

SMART CHECK

Smart Check is a technique to verify the answers. This is our attempt to cross-check the accuracy of the answer.
Smart check is indicated by ($\sqrt{ }$ symbol.

Contents

No.	TOPIC NAME	Page No.
	Part I	
1	Rational and Irrational numbers	1
2	Parallel lines and transversals	14
3	Indices and Cube root	25
4	Altitudes and Medians of a triangle	34
5	Expansion formulae	44
6	Factorisation of Algebraic expressions	53
7	Variation	64
8	Quadrilateral: Constructions and Types	78
9	Discount and Commission	99
	Miscellaneous Exercise 1	108
	Part II	
10	Division of Polynomials	114
11	Statistics	125
12	Equations in one variable	145
13	Congruence of triangles	157
14	Compound interest	168
15	Area	178
16	Surface area and Volume	192
17	Circle: Chord and Arc	203
	Miscellaneous Exercise 2	210
	Important Formulae	218

Note: 1. Solved examples from textbook are indicated by "+".
2. Smart check is indicated by symbol.

Rational and Irrational Numbers

Type of Problems	Practice Set	Q. Nos.
To show rational numbers on a number line	1.1 Practice Problems (Based on Practice Set 1.1)	Q.1,2
	1.2	Q.1
	Practice Problems (Based on Practice Set 1.2)	Q.1
Decimal \quad representation of rational numbers	Practice Problems (Based on Practice Set 1.3)	Q.1
	Practice Problems (Based on Practice Set 1.4)	Q.1,2 2, 3

Let's Recall

1. Natural numbers:

The counting numbers $1,2,3,4, \ldots$ are called natural numbers.
2. Whole numbers:

The union of the set of natural numbers and zero is a set of whole numbers.
The whole numbers are $0,1,2,3,4, \ldots$
3. Integers:

The set of all natural numbers, zero and opposite of all natural numbers is called set of integers.
The integers are $\ldots,-3,-2,-1,0,1,2,3, \ldots$

4. Rational numbers:

If m is any integer and n is a non zero integer, then the number $\frac{m}{n}$ is called a rational number.
Examples: $\frac{-3}{4}, \frac{-9}{48},-1,0, \frac{2}{7}, \frac{6}{10}, 3$, etc.
Note: There are infinite rational numbers between any two rational numbers.
Example: Find the rational numbers between $\frac{3}{8}$ and $\frac{5}{8}$.

Solution:

$$
\frac{3}{8}=\frac{3 \times 10}{8 \times 10}=\frac{30}{80}, \frac{5}{8}=\frac{5 \times 10}{8 \times 10}=\frac{50}{80}
$$

$\therefore \quad$ The rational numbers between $\frac{3}{8}$ and $\frac{5}{8}$ are $\frac{31}{80}, \frac{35}{80}, \frac{37}{80}$, etc.

Let's Study

To show rational numbers on a number line

Example: Show the numbers $\frac{9}{4}$ and $\frac{-3}{4}$ on a number line.
Step 1 : Draw a number line and mark numbers at equal distances.
Step 2: $\frac{9}{4}=9 \times \frac{1}{4}$ Here, the denominator is 4 .
Divide each unit on the right side of zero in 4 equal parts.
Step 3 : Mark the point on the $9^{\text {th }}$ equal part from 0 as $\frac{9}{4}$
or $\frac{9}{4}=2+\frac{1}{4}$
Mark the point at $\left(\frac{1}{4}\right)^{\text {th }}$ distance of unit after 2 as $\frac{9}{4}$.
To show $\frac{-3}{4}$ on the number line, first mark $\frac{3}{4}$ on the number line. The number to the left of 0 at the same distance as $\frac{3}{4}$ is $\frac{-3}{4}$.

Note: A rational number is shown on the number line by dividing each unit into number of parts equal to the denominator of the rational number.

Practice Set 1.1

1. Show the following numbers on a number line. Draw a separate number line for each example.
i. $\quad \frac{3}{2}, \frac{5}{2},-\frac{3}{2}$
ii. $\frac{7}{5}, \frac{-2}{5}, \frac{-4}{5}$
iii. $\frac{-5}{8}, \frac{11}{8}$
iv. $\frac{13}{10}, \frac{-17}{10}$

Solution:

i. $\quad \frac{3}{2}, \frac{5}{2},-\frac{3}{2}$

Here, the denominator of each fraction is 2 .
$\therefore \quad$ Each unit will be divided into 2 equal parts.

ii. $\quad \frac{7}{5}, \frac{-2}{5}, \frac{-4}{5}$

Here, the denominator of each fraction is 5 .
$\therefore \quad$ Each unit will be divided into 5 equal parts.

iii. $\frac{-5}{8}, \frac{11}{8}$

Here, the denominator of each fraction is 8 .
$\therefore \quad$ Each unit will be divided into 8 equal parts.

iv. $\frac{13}{10}, \frac{-17}{10}$

Here, the denominator of each fraction is 10 .
$\therefore \quad$ Each unit will be divided into 10 equal parts.

2. Observe the number line and answer the questions.

i. Which number is indicated by point B?
ii. Which point indicates the number $1 \frac{3}{4}$?
iii. State whether the statement, 'the point D denotes the number $\frac{5}{2}$ ' is true or false.

Ans: Here, each unit is divided into 4 equal parts.
i. Point B is marked on the $10^{\text {th }}$ equal part on the left side of O .
$\therefore \quad$ The number indicated by point B is $\frac{\mathbf{- 1 0}}{\mathbf{4}}$.
ii. $\quad 1 \frac{3}{4}=\frac{1 \times 4+3}{4}$

$$
=\frac{4+3}{4}
$$

$$
=\frac{7}{4}
$$

Point C is marked on the $7^{\text {th }}$ equal part on the right side of O .
$\therefore \quad$ The number $1 \frac{3}{4}$ is indicated by point C.
iii. True

Point D is marked on the $10^{\text {th }}$ equal part on the right side of O .
$\therefore \quad$ D denotes the number $\frac{10}{4}=\frac{5 \times 2}{2 \times 2}=\frac{5}{2}$

Let's Study

Comparison of rational numbers

1. Comparison of two numbers:

For any pair of numbers on a number line, the number to the left is smaller than the other number.

Example: Compare the numbers 0 and $\frac{3}{5}$.
On a number line, 0 is to the left of $\frac{3}{5}$.
$\therefore \quad 0<\frac{3}{5}$
2. Comparison of a positive and a negative number:
A negative number is always less than a positive number.
Example: $\frac{-7}{2}<\frac{8}{3}$
3. Comparison of two positive numbers:

If the numerator and the denominator of a rational number is multiplied by any non zero number, then the value of rational number does not change i.e. $\frac{a}{b}=\frac{a \times k}{b \times k},(k \neq 0)$.
If the denominators of two rational numbers are the same, then the number having greater numerator is the greater rational number.

Example: Compare the numbers $\frac{5}{4}$ and $\frac{\mathbf{2}}{7}$.

Solution:

Here, the denominators of the given rational numbers are not the same.
So, first we have to make their denominators same by taking their LCM.
LCM of 4 and $7=28$
$\frac{5}{4}=\frac{5 \times 7}{4 \times 7}=\frac{35}{28}$,
$\frac{2}{7}=\frac{2 \times 4}{7 \times 4}=\frac{14}{28}$
Now, we have to compare their numerators.
Since, $35>14$
$\therefore \quad \frac{35}{28}>\frac{14}{28}$
$\therefore \quad \frac{5}{4}>\frac{2}{7}$

4. Comparison of two negative numbers:

If a and b are positive numbers such that $a<b$, then $-\mathrm{a}>-\mathrm{b}$.

Examples:

i. Compare the numbers $\mathbf{- 3}$ and $\mathbf{- 8}$.

Solution:

Since, $3<8$
$\therefore \quad-3>-8$
ii. Compare the numbers $\frac{-6}{5}$ and $\frac{-3}{11}$.

Solution:

Here, the denominators of the given rational numbers are not the same.
So, first we have to make their denominators same by taking their LCM.
LCM of 5 and $11=55$
$\frac{-6}{5}=\frac{-6 \times 11}{5 \times 11}=\frac{-66}{55}$,
$\frac{-3}{11}=\frac{-3 \times 5}{11 \times 5}=\frac{-15}{55}$
Now, we have to compare their numerators.
Since, $66>15$
$\therefore \quad \frac{66}{55}>\frac{15}{55}$
$\therefore \quad \frac{-66}{55}<-\frac{15}{55}$
$\therefore \quad-\frac{6}{5}<-\frac{3}{11}$

Try This

1. Verify the following comparisons using a number line.
i. $2<3$, but $-2>-3$
ii. $\frac{5}{4}<\frac{7}{4}$, but $\frac{-5}{4}>\frac{-7}{4}$
(Textbook pg. no. 3)

We know that, on a number line the number to the left is smaller than the other.
$\therefore \quad 2<3$ and $-3<-2$
i.e. $2<3$ and $-2>-3$
$\frac{5}{4}<\frac{7}{4}$ and $\frac{-7}{4}<\frac{-5}{4}$
i.e. $\frac{5}{4}<\frac{7}{4}$ and $\frac{-5}{4}>\frac{-7}{4}$
5. Rules to compare two rational numbers:

If $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers such that b and d are positive, and if
i. $\quad \mathrm{a} \times \mathrm{d}<\mathrm{b} \times \mathrm{c}$, then $\frac{\mathrm{a}}{\mathrm{b}}<\frac{\mathrm{c}}{\mathrm{d}}$

Example: $\frac{1}{5}<\frac{2}{3}$, because $1 \times 3<5 \times 2$
ii. $\quad a \times d=b \times c$, then $\frac{a}{b}=\frac{c}{d}$

Example: $\frac{3}{5}=\frac{6}{10}$, because $3 \times 10=5 \times 6$
iii. $\quad a \times d>b \times c$, then $\frac{a}{b}>\frac{c}{d}$

Example: $\frac{3}{4}>\frac{2}{5}$, because $3 \times 5>4 \times 2$
Practice Set 1.2

1. Compare the following numbers.
i. $-7,-2$
ii. $0,-\frac{9}{5}$
iii. $\frac{8}{7}, 0$
iv. $-\frac{5}{4}, \frac{1}{4}$
v. $\frac{40}{29}, \frac{141}{29}$
vi. $-\frac{17}{20},-\frac{13}{20}$
vii. $\frac{15}{12}, \frac{7}{16}$
viii. $-\frac{25}{8},-\frac{9}{4}$
ix. $\frac{12}{15}, \frac{3}{5}$
x. $-\frac{7}{11},-\frac{3}{4}$

Solution:

i. $-7,-2$

If a and b are positive numbers such that $\mathrm{a}<\mathrm{b}$, then $-\mathrm{a}>-\mathrm{b}$.
Since, $2<7$
$\therefore \quad-2>-7$
ii. $0,-\frac{9}{5}$

On a number line, $-\frac{9}{5}$ is to the left of zero.
$\therefore \quad 0>-\frac{9}{5}$
iii. $\frac{8}{7}, 0$

On a number line, zero is to the left of $\frac{8}{7}$.

$$
\therefore \quad \frac{8}{7}>0
$$

iv. $\quad-\frac{5}{4}, \frac{1}{4}$

We know that, a negative number is always less than a positive number.
$\therefore \quad-\frac{5}{4}<\frac{1}{4}$
v. $\frac{40}{29}, \frac{141}{29}$

Here, the denominators of the given numbers are the same.
Since, $40<141$
$\therefore \quad \frac{40}{29}<\frac{141}{29}$
vi. $\quad-\frac{17}{20},-\frac{13}{20}$

Here, the denominators of the given numbers are the same.
Since, $17>13$
$\therefore \quad-17<-13$
$\therefore \quad-\frac{17}{20}<-\frac{13}{20}$
vii. $\frac{15}{12}, \frac{7}{16}$

Here, the denominators of the given numbers are not the same.
LCM of 12 and $16=48$
$\frac{15}{12}=\frac{15 \times 4}{12 \times 4}=\frac{60}{48}$,
$\frac{7}{16}=\frac{7 \times 3}{16 \times 3}=\frac{21}{48}$
Since, $60>21$
$\therefore \quad \frac{60}{48}>\frac{21}{48}$
$\therefore \quad \frac{15}{12}>\frac{7}{16}$

Alternate method:

$$
\begin{array}{ll}
& 15 \times 16=240 \\
& 12 \times 7=84 \\
& \text { Since, } 240>84 \\
\therefore \quad & 15 \times 16>12 \times 7 \\
\therefore \quad & \frac{\mathbf{1 5}}{\mathbf{1 2}}>\frac{\mathbf{7}}{\mathbf{1 6}} \quad \ldots\left[\text { If } a \times d>b \times c, \text { then } \frac{a}{b}>\frac{c}{d}\right]
\end{array}
$$

viii. $-\frac{25}{8},-\frac{9}{4}$

Here, the denominators of the given numbers are not the same.
LCM of 8 and $4=8$
$-\frac{9}{4}=-\frac{9 \times 2}{4 \times 2}=-\frac{18}{8}$
Since, $25>18$
$\therefore \quad \frac{25}{8}>\frac{18}{8}$
$\therefore \quad-\frac{25}{8}<-\frac{18}{8}$
$\therefore \quad-\frac{25}{8}<-\frac{9}{4}$
ix. $\frac{12}{15}, \frac{3}{5}$

Here, the denominators of the given numbers are not the same.

LCM of 15 and $5=15$
$\frac{3}{5}=\frac{3 \times 3}{5 \times 3}=\frac{9}{15}$
Since, $12>9$
$\therefore \quad \frac{12}{15}>\frac{9}{15}$
$\therefore \quad \frac{12}{15}>\frac{3}{5}$
x. $\quad-\frac{7}{11},-\frac{3}{4}$

Here, the denominators of the given numbers are not the same.

LCM of 11 and $4=44$
$-\frac{7}{11}=-\frac{7 \times 4}{11 \times 4}=-\frac{28}{44}$,
$-\frac{3}{4}=-\frac{3 \times 11}{4 \times 11}=-\frac{33}{44}$
Since, $28<33$
$\therefore \quad \frac{28}{44}<\frac{33}{44}$
$\therefore \quad-\frac{28}{44}>-\frac{33}{44}$

$$
\therefore \quad-\frac{7}{11}>-\frac{3}{4}
$$

Let's Study

Decimal representation of rational numbers

1. Terminating decimal form:

If the rational number when expressed in decimal form has finite number of decimal places and the remainder obtained after division is zero, then that form of the rational number is called terminating decimal form.

Example:

Write the rational number $\frac{13}{4}$ in decimal form.

Solution:

$\frac{3.25}{2}$	$\frac{13}{4}=3.25$
$4 \longdiv { 1 3 . 0 0 }$	
$-\frac{12}{10}$	
Here, the remainder obtained	
after division is zero.	
$-\frac{8}{20}$	Hence, the process of division
$-\frac{20}{0}$	ends.
Such a decimal form of a	
rational number is called a	
terminating decimal form.	

2. Non-terminating recurring decimal form:
i. If a single digit or a group of digits occur repeatedly on the right of the decimal point, then that form of rational number is called the recurring decimal form.
ii. If a single digit occurs repeatedly on the right of the decimal point, we put a point above that digit, and if a group of digits occur repeatedly, we put a horizontal line above those digits.

Examples:

i. $\quad \frac{25}{9}=2.77 \ldots=2 . \overline{7}$

Here, digit 7 is repeating after the decimal point.
ii. $\quad-\frac{17}{11}=-1.5454 \ldots=-1 . \overline{54}$

Here, digits 5 and 4 are repeating after the decimal point.
iii. $\frac{23}{7}=3.285714285714 \ldots=3 . \overline{285714}$

Here, digits 2, 8, 5, 7, 1 and 4 are repeating after the decimal point.

Note: A terminating decimal number can be written in non-terminating recurring decimal form.

Example:

$\frac{9}{4}=2.25=2.25000 \ldots=2.25 \dot{0}$

Practice Set 1.3

1. Write the following rational numbers in decimal form.
i. $\frac{9}{37}$
ii. $\frac{18}{42}$
iii. $\frac{9}{14}$
iv. $\quad-\frac{103}{5}$
v. $-\frac{11}{13}$

Solution:

	$\text { ii. } \begin{aligned} & \frac{18}{42}=\frac{3 \times 6}{7 \times 6} \end{aligned}=\frac{3}{7}$	$\text { iii. } \begin{aligned} & \frac{9}{14} \\ & 1 4 \longdiv { \frac { 0 . 6 4 2 8 5 7 1 } { 9 . 0 0 0 0 0 0 0 } } \\ & \frac{-0}{90} \\ &-\frac{84}{60} \\ &-\frac{56}{40} \\ &-\frac{28}{120} \\ &-\frac{112}{80} \\ &-\frac{90}{100} \\ & \therefore \frac{9}{14} \end{aligned}$
$\begin{array}{ll} \text { iv. } & -\frac{103}{5} \\ & 5 \longdiv { 1 0 3 . 0 } \\ & \frac{-10}{03} \\ & -\frac{0}{30} \\ & -\frac{30}{0} \\ \therefore \quad & \frac{103}{5}=20.6 \\ \therefore & -\frac{103}{5}=-\mathbf{2 0 . 6} \end{array}$	v. $\quad-\frac{11}{13}$ $1 3 \longdiv { 1 1 . 0 0 0 0 0 0 }$ $-\frac{0}{110}$ $-\frac{104}{60}$ $-\quad 52$ $-\frac{78}{20}$ $\begin{array}{r}-\quad 13 \\ \hline-\begin{array}{r}70 \\ 65 \\ \hline\end{array} \\ \hline \\ \hline\end{array}$ $\therefore \quad \frac{11}{13}=0 . \overline{846153}$ $\therefore \quad-\frac{11}{13}=-\mathbf{0 . 8 4 6 1 5 3}$	

Let's Study

Irrational numbers

In addition to the rational numbers, there are many more numbers on the number line. They are not rational numbers.
The numbers which are not rational are irrational numbers.
Examples: $\sqrt{2}, \sqrt{5}, \sqrt{7}, 3 \sqrt{2}, 5+\sqrt{2}, 7-\sqrt{3}$, etc.
To show the number $\sqrt{2}$ on a number line:
i. Draw a number line and take a point A at 1 such that $l(\mathrm{OA})=1$ unit.
ii. Draw a line l perpendicular to the number line through the point A .
iii. Take a point P on the line l such that $l(\mathrm{AP})=1$ unit.
iv. Draw seg OP. $\triangle \mathrm{OAP}$ formed is a right angled triangle.
By Pythagoras theorem, $[l(\mathrm{OP})]^{2}=[l(\mathrm{OA})]^{2}+[l(\mathrm{AP})]^{2}$ $=1^{2}+1^{2}=1+1=2$
$\therefore \quad l(\mathrm{OP})=\sqrt{2}$ units
...[Taking square root of both sides]
v. Draw an arc with centre O and radius OP . Mark the point of intersection of the number line and the arc as Q .
$\therefore \quad l(\mathrm{OQ})=l(\mathrm{OP})=\sqrt{2}$ units
$\therefore \quad$ The point Q on the number line represents the

To show $-\sqrt{2}$ on the number line, mark a point to the left of O at the same distance as $\sqrt{2}$.
Similarly, irrational numbers $\sqrt{3}, \sqrt{5}, \sqrt{6}, \ldots$ can be shown on a number line.
Note: i. π is an irrational number. But for calculation purpose, its value is taken as $\frac{22}{7}$ or 3.14 . $\frac{22}{7}$ and 3.14 are rational numbers.
ii. The numbers which can be shown by points on a number line are called real numbers.
iii. All rational numbers and irrational numbers are real numbers.

Remember This

The decimal form of an irrational number is non-terminating and non-recurring.

Practice Set 1.4

1. The number $\sqrt{2}$ is shown on a number line. Steps are given to show $\sqrt{3}$ on the number line using $\sqrt{2}$. Fill in the boxes properly

The point Q on the number line shows the number $\sqrt{2}$.
A line perpendicular to the number line is drawn through the point Q . Point R is at unit distance from Q on the line.
Right angled $\triangle \mathrm{OQR}$ is obtained by drawing seg OR.

$$
l(\mathrm{OQ})=\sqrt{2}, l(\mathrm{QR})=1
$$

$\therefore \quad$ By Pythagoras theorem,

$$
\begin{aligned}
{[l(\mathrm{OR})]^{2} } & =[l(\mathrm{OQ})]^{2}+[l(\mathrm{QR})]^{2} \\
& =\sqrt{2}^{2}+\mathbf{1}^{2} \\
& =\mathbf{2}+\mathbf{1}=\mathbf{3} \\
\therefore \quad l(\mathrm{OR}) & =\sqrt{3}
\end{aligned}
$$

...[Taking square root of both sides] Draw an arc with centre O and radius OR. Mark the point of intersection of the line and the arc as C . The point C shows the number $\sqrt{3}$.

2. Show the number $\sqrt{5}$ on the number line.

Solution:

Draw a number line and take a point Q at 2 such that $l(\mathrm{OQ})=2$ units.
Draw a line QR perpendicular to the number line through the point Q such that
$l(\mathrm{QR})=1$ unit.

Draw seg OR.
$\triangle O Q R$ formed is a right angled triangle.
By Pythagoras theorem,
$[l(\mathrm{OR})]^{2}=[l(\mathrm{OQ})]^{2}+[l(\mathrm{QR})]^{2}$
$=2^{2}+1^{2}$
$=4+1$
$=5$
$\therefore \quad l(\mathrm{OR})=\sqrt{5}$ units
...[Taking square root of both sides]
Draw an arc with centre O and radius OR. Mark the point of intersection of the number line and arc as C. The point C shows the

3. Show the number $\sqrt{7}$ on the number line.

Solution:

Draw a number line and take a point Q at 2 such that $l(\mathrm{OQ})=2$ units.
Draw a line QR perpendicular to the number line through the point Q such that
$l(\mathrm{QR})=1$ unit.
Draw seg OR.
$\triangle O Q R$ formed is a right angled triangle.

By Pythagoras theorem,
$[l(\mathrm{OR})]^{2}=[l(\mathrm{OQ})]^{2}+[l(\mathrm{QR})]^{2}$
$=2^{2}+1^{2}$
$=4+1$
$=5$
$\therefore \quad l(\mathrm{OR})=\sqrt{5}$ units
...[Taking square root of both sides] Draw an arc with centre O and radius OR. Mark the point of intersection of the number line and arc as C. The point C shows the number $\sqrt{5}$.
Similarly, draw a line CD perpendicular to the number line through the point C such that
$l(C D)=1$ unit.
By Pythagoras theorem,
$l(\mathrm{OD})=\sqrt{6}$ units
The point E shows the number $\sqrt{6}$.
Similarly, draw a line EP perpendicular to the number line through the point E such that
$l(E P)=1$ unit.
By Pythagoras theorem,
$l(\mathrm{OP})=\sqrt{7}$ units
The point F shows the number $\sqrt{7}$.

Activities for Practice

1. Fill in the boxes.

2. Fill in the boxes with proper symbols $(<,=,>)$:
i. $-\frac{5}{8} \square \frac{2}{13}$
ii. $0 \square-\frac{3}{5}$
iii. $-\frac{7}{3} \square-\frac{5}{3}$
iv. $\frac{6}{10} \square \frac{15}{25}$
3. Complete the following table.

Number	Terminating decimal form	Non- terminating recurring decimal form
$1 . \overline{54}$	No	Yes
$0.333 \ldots$		
2.125		
7.35		
$0.285714285714 \ldots$		

Answers

1.

2.
i. $\quad-\frac{5}{8}<\frac{2}{13}$
ii. $\quad 0 \quad \square-\frac{3}{5}$
iii. $-\frac{7}{3} \leq-\frac{5}{3}$
iv. $\quad \frac{6}{10} \boxminus \frac{15}{25}$
3.

Number	Terminating decimal form	Non- terminating recurring decimal form
$1 . \overline{54}$	No	Yes
$0.333 \ldots$	No	Yes
2.125	Yes	No
7.35	Yes	No
$0.285714285714 \ldots$	No	Yes

Multiple Choice Questions

1. On the number line if each unit is divided in 5 equal parts, then the twentieth point on right side of zero shows
(A) $\frac{1}{5}$
(B) $\frac{1}{4}$
(C) 4
(D) 5
2. The point at $\left(\frac{2}{5}\right)^{\text {th }}$ distance after 3 is
(A) $\frac{3}{5}$
(B) $\frac{6}{5}$
(C) $\frac{15}{5}$
(D) $\frac{17}{5}$
3. The decimal form of which of the following numbers will be non-terminating recurring type?
(A) $\frac{18}{5}$
(B) $\frac{17}{3}$
(C) $\frac{415}{10}$
(D) $\frac{21}{2}$
4. $\frac{217}{12}=$
(A) $18.08 \dot{3}$
(B) $18.0 \overline{83}$
(C) $18 . \overline{083}$
(D) $18 . \overline{803}$
5. Which of the following is not an irrational number?
(A) $6+\sqrt{2}$
(B) $6-\sqrt{2}$
(C) $2 \sqrt{2}$
(D) All are irrational numbers

Additional Problems for Practice

Based on Practice Set 1.1

1. Show the following numbers on a number line. Draw a separate number line for each example.

+ i. $\frac{7}{3}, 2,-\frac{2}{3}$
ii. $\frac{6}{7},-\frac{8}{7}, \frac{11}{7}$
iii. $\frac{2}{13},-\frac{4}{13}$
iv. $\quad \frac{3}{15}, \frac{7}{15}, \frac{8}{15}$

2. Observe the number line and answer the questions.

i. Which number is indicated by point R ?
ii. Which point indicates the number $1 \frac{3}{5}$?
iii. State whether the statement, 'the point X denotes the number $\frac{13}{5}$, is true or false.

Based on Practice Set 1.2

1. Compare the following numbers.
i. $\frac{6}{7}, \frac{3}{7}$

+ ii. $\frac{5}{4}, \frac{2}{3}$
iii. $\frac{8}{15}, \frac{7}{3}$
+ iv. $-\frac{7}{9}, \frac{4}{5}$
v. $-\frac{7}{8},-\frac{3}{8}$
+ vi. $-\frac{7}{3},-\frac{5}{2}$
+ vii. $\frac{3}{5}, \frac{6}{10}$
viii. $0,-\frac{18}{3}$
ix. $\frac{15}{12}, 0$
x. $\frac{102}{61}, \frac{77}{61}$
xi. $-\frac{501}{77},-\frac{309}{77}$
xii. $-\frac{17}{9},-\frac{2}{3}$

Based on Practice Set 1.3

1. Write the following rational numbers in decimal form.
$\begin{array}{lll}\text { +i. } & \frac{7}{4} & \text { +ii. } \\ \frac{7}{6} \\ \text { +iii. } & \frac{5}{6} & \text { +iv. }\end{array}-\frac{5}{3}$
v. $-\frac{308}{5}$
vi. $\quad \frac{17}{99}$

+ vii. $\frac{23}{99}$
+ viii. $\frac{22}{7}$
ix. $\frac{6}{35}$
x. $\quad \frac{67}{21}$
xi. $-\frac{51}{13}$

Based on Practice Set 1.4

1. Show the number $\sqrt{10}$ on the number line.
2. Show the number $-\sqrt{6}$ on the number line.

Chapter Assessment

1. Choose the correct alternative for each of the following questions.
i. For any pair of numbers on a number line, the number to the left is \qquad than the other.
(A) smaller
(B) bigger
(C) equal to
(D) cannot be predicted
ii. For the number line given below, point \ldots indicates the number $-1 \frac{1}{3}$.

(A) P
(B) Q
(C) R
(D) S
iii. For the number line shown in Q .1. (ii), point P indicates the number \qquad .
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $-\frac{1}{3}$
(D) $-\frac{1}{2}$
2. Attempt the following questions.
i. Show the following number on a number line. $\frac{-7}{6}, \frac{5}{6}$
ii. Write the rational number $\frac{12}{16}$ in decimal form.
iii. Compare the following numbers.
a. $\frac{-16}{7}, \frac{-8}{7}$
b. $\frac{19}{15}, \frac{2}{5}$
3. Attempt the following questions.
i. Show the number $\sqrt{6}$ on the number line.
ii. Write the rational number $\frac{16}{21}$ in decimal form.

Answers

Multiple Choice Questions

1. (C)
2. (D)
3. (B)
4. (A)
5. (D)

Additional Problems for Practice

Based on Practice Set 1.1

2. i. $-\frac{6}{5}$
ii. Point T
iii. True

Based on Practice Set 1.2

1. i. $\frac{6}{7}>\frac{3}{7}$
ii. $\frac{5}{4}>\frac{2}{3}$
iii. $\frac{8}{15}<\frac{7}{3}$
iv. $\quad \frac{-7}{9}<\frac{4}{5}$
v. $\frac{-7}{8}<\frac{-3}{8}$
vi. $\frac{-7}{3}>\frac{-5}{2}$
vii. $\frac{3}{5}=\frac{6}{10}$
viii. $0>\frac{-18}{3}$
ix. $\quad \frac{15}{12}>0$
x. $\frac{102}{61}>\frac{77}{61}$
xi. $\frac{-501}{77}<\frac{-309}{77}$
xii. $\frac{-17}{9}<\frac{-2}{3}$

Based on Practice Set 1.3

1. i. $\quad 1.75$
ii. $\quad 1.1 \dot{6}$
iii. $0.8 \dot{3}$
iv. $-1 . \dot{6}$
v. $\quad-61.6$
vi. $\quad 0 . \overline{17}$
vii. $0 . \overline{23}$
viii. $3 . \overline{142857}$
ix. $\quad 0 . \overline{1714285}$
x. $\quad 3 . \overline{190476}$
xi. $\quad-3 . \overline{923076}$

Chapter Assessment

1. i. (A)
ii. (D)
iii. (A)
2. ii. 0.75
iii. a. $\frac{-16}{7}<\frac{-8}{7}$
b. $\frac{19}{15}>\frac{2}{5}$
3. ii. 0.761904

AVAILABLE BODKS FIR STD. VIII:

 (ENE., MAR. 8 SEMI ENE. MED.)
NDTES

\longrightarrow English Balbharati
$—$ मराठी सुलभभारती
\rightarrow हिंदी सुलभभारती
\longrightarrow History and Civics

- Geography
\longrightarrow General Science
- Mathematics

NDTES

\longrightarrow My English Book
\longrightarrow मराठी बालभारती

- हिंदी सुल्लभभारती
\rightarrow इतिहास व नागरिकशास्त्र
भूगोल
सामान्य विज्ञान
- गणित

AVAILABLE BODKS FOR STD. IX:

(ENE., MAR. \& SEMI ENE. MED.)

NDTES

- English Kumarbharati
\longrightarrow मराठी अक्षरभारती
- हिंदी लोककभारती
- हिंदी लोकवाणी
- आमोद: सम्पूर्ण-संस्कृतम्
- आनन्दः संयुक्त-संस्कृतम्प
- History and Political Science
- Geography
\longrightarrow Mathematics (Part-1)
- Mathematics (Part-II)
\longrightarrow Science and Technology

OUR PRODUCT RANGE

Children Books I School Section I Junior College Degree College I Entrance Exams | Stationery

WDRKBIDK

\longrightarrow English Balbharati
$—$ मराठी सुलभभारती

- हिंदी सुलभभारती
- Mathematics
\longrightarrow My English Book
\longrightarrow मराठी बालभारती

WORKBIDK

— English Kumarbharati
\rightarrow मराठी अक्षरभारती
\rightarrow हिंदी लोकभारती
\longrightarrow Mathematics (Part-I)
\longrightarrow Mathematics (Part - II)
\longrightarrow My English Coursebook
\rightarrow मराठी कुमारभारती

ADDITIINAL TITLES

```
Grammar & Writing Skills Books
(Std. VIII, IX & X)
\longrightarrow \text { Marathi}
\longrightarrow \text { Hindi}
\rightarrow \text { English}
```


Visit Our Website

Target publications spt. Lta.
 Transforming lives through learning.
 \section*{Address:}

$2^{\text {nd }}$ floor, Aroto Industrial Premises CHS,
Above Surya Eye Hospital, 63-A, P. K. Road,
Mulund (W), Mumbai 400080
Tel: 8879939712 / 13 / 14 / 15

[^0]: This reference book is transformative work based on 'Std. VIII Mathematics; Fourth Reprint: 2022' published by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

 This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

