SAMPLE CONTENT

Bridge Course

MCQs Navigator Book MANTER EXTERNATION

Based on Latest Paper Pattern

Based on complete syllabus of Std. XI

- Important Formulae
- Previous Years' Questions

Includes Authentic Questions from Latest MHT-CET Examination

Std.XI

MHT-CET Bridge Course MCQs Navigator

Scan the adjacent QR code to download Solutions to Multiple Choice Questions in PDF format.

Printed at: Print to Print, Mumbai

© Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

Balbharati Registration No.: 2018MH0022

TEID: 3955

P.O. No. 14103

Textbook Chapter No.	Chapter Name	Page No.
1	Units and Measurements	
2	Mathematical Methods	
3	Motion in a Plane	
4	Laws of Motion	
5	Gravitation	
6	Mechanical Properties of Solids	
7	Thermal Properties of Matter	
8	Sound	
9	Optics	
10	Electrostatics	
11	Electric Current Through Conductors	
12	Magnetism	
13	Electromagnetic Waves and Communication System	
14	Semiconductors	
•	MHT-CET 2020 Question Paper	
•	MHT-CET 2021 Question Paper	
•	MHT-CET 2022 Question Paper	
•	MHT-CET 2023 Question Paper	
•	MHT-CET 2024 Question Paper	
•	Answer key	

Textbook Chapter No.

Units and Measurements

Subtopics

- Introduction
- System of Units
- Measurement of Length
- Measurement of Mass
- Measurement of Time

Formulae

- 1. Measure of physical quantity: M = nu where, n = numerical value, u = unit
- Relation between numerical value and size of unit: n1u1 = n2u2
- 3. Conversion factor of a unit in two system of units:

 $\mathbf{n} = \left[\frac{\mathbf{M}_1}{\mathbf{M}_2}\right]^{\mathbf{a}} \left[\frac{\mathbf{L}_1}{\mathbf{L}_2}\right]^{\mathbf{b}} \left[\frac{\mathbf{T}_1}{\mathbf{T}_2}\right]^{\mathbf{c}}$

- 4. **Plane angle:** $d\theta = \frac{ds}{r}$
- 5. Solid angle: $d\Omega = \frac{dA}{r^2}$
- 6. **Parallax angle:** $\theta = \frac{b}{D}$
- 7. **Diameter of planet/star:** $d = \alpha D$.
- 8. Average value or mean value: $a_{mean} = \frac{a_1 + a_2 + a_3 + ... + a_n}{n} = \frac{1}{n} \sum_{i=1}^n a_i$
- 9. Absolute error = | Average value – Measured value | $| \Delta a_n | = | a_{mean} - a_n |$
- 10. Mean absolute error: $\Delta a_{\text{mean}} = \frac{\Delta a_1 + \Delta a_2 + ... + \Delta a_n}{n} = \frac{1}{n} \sum_{i=1}^n \Delta a_i$
- 11. **Relative (fractional) error** = $\frac{\Delta a_{\text{mean}}}{a_{\text{mean}}}$

- Dimensions and Dimensional Analysis
- Accuracy, Precision and Uncertainty in Measurements
- Errors in Measurements
- Significant Figures
- **12. Percentage error** = $\frac{\Delta a_{\text{mean}}}{a_{\text{mean}}} \times 100 \%$
- 13. If $Z = A \pm B$, then maximum error: $\Delta Z = \pm (\Delta A + \Delta B)$

14. If
$$Z = AB$$
 or $Z = \frac{A}{B}$ then,
$$\frac{\Delta Z}{Z} = \pm \left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)$$

15. If
$$Z = A^m \times B^n$$
, then error in measurement:
 $\frac{\Delta Z}{Z} = \frac{m\Delta A}{A} + \frac{n\Delta B}{B}$

Various prefixes to express a physical quantity:

Prefix	Symbol	Power of 10	Prefix	Symbol	Power of 10
Tera	Т	10^{12}	micro	μ	10^{-6}
Giga	G	10^{9}	nano	n	10^{-9}
Mega	M	10^{6}	angstrom	Å	10^{-10}
Kilo	k	10^{3}	pico	р	10^{-12}
milli	m	10^{-3}	femto	f	10^{-15}

• System of Units

- 1. A set of fundamental and derived units is known as .
 - (A) supplementary units
 - (B) system of units
 - (C) complementary units
 - (D) metric units
- 2. The physical quantity having the same unit in all the systems of unit is _____.
 - (A) length(B) time(C) mass(D) foot
 - (D) 100

MHT-CET Bridge Course Physics

3. Which of the following system of units is not based on units of mass, length and time alone? M.K.S (A) S.I. (B)

> (C) F.P.S (D) C.G.S

Dimensions and Dimensional Analysis •

- Checking the correctness of physical equations 4. using the method of dimensions is based on
 - (A) equality of inertial frame of reference.
 - (B) the type of system of units.
 - the method of measurement. (C)
 - principle of homogeneity of dimensions. (D)
- 5. Dimensional equation CANNOT be used
 - (A) to check the correctness of a physical quantity.
 - (B) to derive the relation between different physical quantities.
 - to find out constant of proportionality (C) which may be pure number.
 - (D) to change from one system of units to another system.
- If the dimensions of a physical quantity are 6. given by $[L^{a}M^{b}T^{c}]$, then the physical quantity will be
 - force, if a = -1, b = 0, c = -2(A)
 - pressure, if a = -1, b = 1, c = -2(B)
 - velocity, if a = 1, b = 0, c = 1(C)
 - acceleration, if a = 1, b = 1, c = -2(D)
- 7. The fundamental physical quantities that have same dimensions in the dimensional formulae of torque and angular momentum are
 - (A) mass, time (B) time, length
 - mass, length (D) time, mole (C)
- 8. Which of the following represents correct dimensions of the coefficient of viscosity?
 - $[M^{1}L^{-1}T^{-2}]$ (A) (B) $[M^{1}L^{-1}T^{-1}]$
 - (D) $[M^{1}L^{-2}T^{-2}]$ $[M^{1}L^{1}T^{-1}]$ (C)
- 9. Dimensions of length in electric dipole moment, electric flux and electric field are respectively (A) L, L^2, L^3 (C) L^{-1}, L^3, L^3 (B) L^3, L^2, L
 - (D) L, L^3, L
- 10. Out of the following pairs, which one does NOT have identical dimensions?
 - Energy and moment of force (A)
 - (B) Work and torque
 - Density and surface energy (C)
 - (D) Pressure and stress

The dimensions of $\frac{1}{\sqrt{\epsilon_0\mu_0}}$ is that of 11.

12. The terminal velocity v of a small steel ball of radius r falling under gravity through a column of viscous liquid coefficient of viscosity n depends on mass of the ball m, acceleration due to gravity g. Which of the following relation is dimensionally correct?

(A)
$$v \propto \frac{mgr}{\eta}$$
 (B) $v \propto mg\eta r$
(C) $v \propto \frac{mg}{\eta r}$ (D) $v \propto \frac{\eta mg}{r}$

- A force F is given by $F = at + bt^2$, where 't' is 13. time. What are the dimensions of a and b?
 - (A) $[M^{1}L^{1}T^{-1}]$ and $[M^{1}L^{1}T^{0}]$
 - (B) $[M^{1}L^{1}T^{-3}]$ and $[M^{1}L^{1}T^{-4}]$
 - (C) $[M^{1}L^{1}T^{-4}]$ and $[M^{1}L^{1}T^{1}]$
 - (D) $[M^{1}L^{-3}T^{1}]$ and $[M^{1}L^{1}T^{-4}]$
- The equation of a wave is given by 14.

$$Y = A \sin \omega \left(\frac{x}{v} - k\right)$$

where ω is the angular velocity and v is the linear velocity. The dimension of k is

(A) LT (B) T
(C)
$$T^{-1}$$
 (D) T

The quantity $X = \frac{\varepsilon_0 LV}{t}$: ε_0 is the permittivity of 15. free space, L is length, V is potential difference

and t is time. The dimensions of X are same as that of

- Resistance (A) (B) Charge Voltage (C) (D) Current
- The dimensions of K in the equation 16.

$$W = \frac{1}{2}Kx^{2} \text{ is}$$
(A) $[M^{1}L^{0}T^{-2}]$
(B) $[M^{0}L^{1}T^{-1}]$
(C) $[M^{1}L^{1}T^{-2}]$
(D) $[M^{1}L^{0}T^{-1}]$

- 17. What is dimension of a in Van der Waal's equation? $[M^{1}L^{-1}T^{-2}mol^{-2}]$ (B) $[M^{1}L^{3}T^{-2}mol^{-2}]$ (A)
 - $[M^{1}L^{5}T^{-2}mol^{-2}]$ (D) $[M^{1}L^{3}T^{-2}mol^{-1}]$ (C)
- If the time period (T) of vibration of a liquid 18. drop depends on surface tension (S), radius (r) of the drop and density (ρ) of the liquid, then the expression of T is
 - (A) $T = k \sqrt{\rho r^3 / S}$

(B)
$$T = k \sqrt{\rho^{1/2} r^3 / S}$$

(C)
$$T = k \sqrt{\rho r^3} / S^{1/2}$$

(D) T = None of these

2

In the relation $P = \frac{\alpha}{\beta} e^{\frac{-\alpha Z}{k\theta}}$ P is pressure, Z is the 19.

> distance, k is Boltzmann's constant and θ is the temperature. The dimensional formula of β will be

- $[M^{0}L^{2}T^{0}]$ (B) $[M^{1}L^{2}T^{1}]$ (D) $[M^{0}L^{2}T^{-1}]$ (A) $[M^{1}L^{0}T^{-1}]$ (C)

Accuracy, Precision and Uncertainty in Measurements

- 20. The difference between the true value and measured value is called
 - (A) mistake (B) error
 - significant figures (D) fault (C)
- 21. The circular divisions of shown screw gauge are 50. It moves 0.5 mm on main scale in one rotation. The diameter of the ball is

Errors in Measurements

- 22. If the pointer of the voltmeter is not exactly at the zero of the scale then the error is called
 - (A) instrumental error (B) systematic error personal error (D) random error (C)
- Accidental error can be minimised by 23.
 - (A) taking only one reading.
 - (B) taking small magnitude of the quantity.
 - selecting instrument with greater least count. (C)

1.

- selecting instrument with small least count. (D)
- The formula for percentage error is 24.

(A) Percentage error =
$$\frac{|\Delta a_m|}{a_m} \times 100\%$$

(B) Percentage error = $\frac{1}{n} \sum_{i=1}^{n} |\Delta a_i| \times 100\%$

(C) Percentage error =
$$\frac{a_m}{|\Delta a_m|} \times 100\%$$

(D) Percentage error =
$$\frac{1}{n}\sum_{i=1}^{n} a_i \times 100\%$$

25. The percentage error in the measurement of radius r of a sphere is 0.1% then the percentage error introduced in the measurement of volume is $(\Lambda) = 0.10/$ 0 20/ (\mathbf{D})

26. The period of oscillation of a simple pendulum is by $T = 2\pi \sqrt{\frac{l}{g}}$ where *l* is about given 100 cm and is known to have 1 mm accuracy. The period is about 2 s. The time of 100 oscillations is measured by a stop watch of least count 0.1 s. The percentage error in g is 0.1% 1% (A) (B) 0.2% (D) 0.8% (C)

27. The heat dissipated in a resistance can be determined from the relation: $H = \frac{I^2 Rt}{4.2} cal$

> If the maximum errors in the measurement of current, resistance and time are 2%, 1% and 1% respectively, what would be the maximum error in the dissipated heat?

- 5% 4% (A) **(B)**
- (C) 6% (D) 0.5%
- 28. If radius of the sphere is (5.3 ± 0.1) cm. Then percentage error in its volume will be

(A)
$$3 + 6.01 \times \frac{100}{5.3}$$
 (B) $\frac{1}{3} \times 0.01 \times \frac{100}{5.3}$
(C) $\left(\frac{3 \times 0.1}{5.3}\right) \times 100$ (D) $\frac{0.1}{5.3} \times 100$

29. In a vernier callipers, one main scale division is x cm and n divisions of the vernier scale coincide with (n-1) divisions of the main scale. The least count (in cm) of the callipers is

(A)
$$\left(\frac{n-1}{n}\right)x$$
 (B) $\frac{nx}{(n-1)}$
(C) $\frac{x}{n}$ (D) $\frac{x}{(n-1)}$

30. A screw guage gives the following reading when used to measure the diameter of a wire. Main scale reading : 0 mm Circular scale reading : 52 divisions The diameter of wire from the above data is 0.52 cm 0.052 cm (A) **(B)**

> (C) 0.026 cm (D) 0.005 cm

Significant Figures

31. Significant figures depends upon the _____ of the measuring instrument. (A) length (B) readings (C) number (D) accuracy 32. The number of significant figures in 0.400 is (A) 1 **(B)** 2

4

- (C) 3 (D)

MHT-CET Bridge Course Physics

33.	State the number	of signif	ficant figures in
	6.032 J		
	(A) 4	(B)	3
	(C) 2	(D)	1
34.	The answer of (9.15 significant figure is	+ 3.8) w	ith due regards to
	(A) 13.000	(B)	13.00
	(C) 13.0	(D)	13

35. The sides of a rectangle are 6.01 m and 12 m. Taking the significant figures into account, the area of the rectangle is

(A)	72.00 cm^2	(B)	72.1 cm^2
(C)	72 m^2	(D)	72.12 cm^2

- Order of magnitude of $(10^6 + 10^3)$ is 36. (A) 10^{18} (B) 10^9 (C) 10^6 10^{3} (D)
- The charge on the electron is 1.6×10^{-19} C. 37. The order of magnitude is (A) 10^{19} C (F (C) 10^{-18} C (F 10¹⁸ C (B) 10^{-19} C (D)
- The magnitude of any physical quantity can be 38. expressed as $A \times 10^n$ where n is a number called order of magnitude and A is
 - (A) $0.1 \le A \le 1$ (B) $0.5 \le A \le 5$ (C) $5 \le A < 9$ (D) $1 \le A > 9$
- 39. The order of magnitude of 49 and the order of magnitude of 51

differs by 1. (A) is same. (B) is 2.

(C) is 1. (D)

AVAILABLE BOOKS FOR COMPETITIVE EXAMINATIONS

Published by:

Bridge Course MHT-CET Books

🕲 B2, 9th Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)-400604 | 🕲 88799 39712 / 14 | 😒 88799 39713 / 15

www.targetpublications.org mail@targetpublications.org