

ROADMAP TO SUCCESS

SAMPLE CONTENT

Quick Review

2024

Important Formulae & Shortcuts

- Subtopic wise segregation
- Classwork/Homework segregation

 \Diamond

Previous Years' Questions

CHEMISTRY (STD. XII)

Target Publications® Pvt. Ltd.

HOLISTIC **MHT-CET** CHEMISTRY QUESTIONS

Based on Std. XII Syllabus of MHT-CET

Scan the adjacent QR code to download Solutions of Classwork, Homework & Previous Years' Questions.

Printed at: Star Print, Mumbai

© Target Publications Pvt. Ltd. No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

Balbharati Registration No.: 2018MH0022

TEID: 3930

P.O. No. 14849

Textbook Chapter No.	Chapter Name	Page No.
1	Solid State	1
2	Solutions	14
3	Ionic Equilibria	28
4	Chemical Thermodynamics	37
5	Electrochemistry	51
6	Chemical Kinetics	66
7	Elements of Groups 16, 17 and 18	79
8	Transition and Inner Transition Elements	91
9	Coordination Compounds	102
10	Halogen Derivatives	116
11	Alcohols, Phenols and Ethers	132
12	Aldehydes, Ketones and Carboxylic Acids	150
13	Amines	170
14	Biomolecules	183
15	Introduction to Polymer Chemistry	193
16	Green Chemistry and Nanochemistry	204

Textbook Chapter No.

O1 Solid State

Subtopics

1.1	Introduction
1.2	Types of solids
1.3	Classification of crystalline solids
1.4	Crystal structure
1.5	Cubic system
1.6	Packing of particles in crystal lattice
1.7	Packing efficiency
1.8	Crystal defects or imperfections
1.9	Electrical properties of solids
1.10	Magnetic properties of solids

Valuable defective materials !!!!

Do all defective materials turn up discarded? Well think again. They might be present in your necklace studded with precious and semi-precious stones. These stones with eye-catching colour and shine are due to their crystalline structure with presence of trace quantities of mostly transition elements, which are generally called as impurities. One such example is corundum (Al_2O_3) an important mineral of aluminium. The gemstone varieties of this mineral are tuby, sapphire, etc.

Ruby (Red) contains Al₂O₃ and Cr₂O₃ Sapphire (blue) contains Al₂O₃, Fe₂O₃ and TiO₂.

Classification of solids:

> Isomorphous and polymorphous substances:

Isomorphous	Two or more substances having the same crystal structure are said to be isomorphous.	
	Isomorphous pairs have same atomic ratio.	
	e.g.: NaF and MgO (atomic ratio = 1:1), NaNO ₃ and CaCO ₃ (atomic ratio = 1:1:3)	
Daharanaharan	A single substance that exists in two or more forms or crystalline structures is said to be polymorphous. Polymorphism occurring in elements is called allotropy.	
Polymorphous	e.g.: Calcite and aragonite: polymorphic forms of calcium carbonate,	
	α -quartz, β -quartz and cristobalite: polymorphic forms of silica.	

> Classification of crystalline solids:

> Types of unit cells:

Primitive or simple unit cell	Particles are present at its corners only.
Body-centred unit cell	One particle is present at the centre of its body in addition to the corner particles.
Face-centred unit cell	Particles are present at the centre of each of the faces in addition to the
	corner particles.
Base-centred unit cell	Particles are present at the centre of any two of its opposite faces in
	addition to the corner particles.

.....

Seven crystal systems:

Crystal system	Types of unit cells			
Cubic	i. Simple or primitive	ii. Body-centred	iii. Face-centred	
Orthorhombic	i. Simple or primitive	ii. Body-centred	iii. Face-centred	iv. Base-centred
Tetragonal	i. Simple or primitive	ii. Body-centred		
Monoclinic	i. Simple or primitive	ii. Base-centred		
Rhombohedral	i. Simple or primitive			
Triclinic	i. Simple or primitive			
Hexagonal	i. Simple or primitive			

> Types of voids:

Triangular voids	Tetrahedral voids	Octahedral voids	
A triangular void is surrounded by	A tetrahedral void is surrounded by	An octahedral void is surrounded	
three spheres.	four spheres.	by six spheres.	
Triangular void	Tetrahedral void	Octahedral void	

> Types of cubic unit cell:

Type of unit cell	Simple cubic	Body-centred cubic	Face-centred cubic
Diagram			
No. of particles per unit cell	1	2	4
Relation between a and r	$r = \frac{a}{2} = 0.5000 a$	$r = \frac{\sqrt{3}}{4}a = 0.4330 a$	$r = \frac{\sqrt{2}}{4}a = 0.3535 a$
Volume of one particle	$\frac{\pi a^3}{6} = 0.5237 a^3$	$\frac{\sqrt{3}\pi a^3}{16} = 0.34 a^3$	$\frac{\pi a^3}{12\sqrt{2}} = 0.185 a^3$
Total volume occupied by particles in unit cell	$\frac{\pi a^3}{6} = 0.5237 a^3$	$\frac{\sqrt{3}\pi a^3}{8} = 0.68 a^3$	$\frac{\pi a^3}{3\sqrt{2}} = 0.74 a^3$
Coordination number of atoms	6 : four in the same layer, one directly above and one directly below	8 : four in the layer below and one in the layer above	12 : six in its own layer, three above and three below
Packing efficiency	52.4 %	68 %	74 %

Crystal defects:

Classification of solids based on electrical properties:

Types of semiconductors:

> Classification of solids based on response to magnetic field:

Substance	Characteristics	Examples
Diamagnetic	• Repelled weakly in magnetic field.	N ₂ , F ₂ , NaCl, H ₂ O, benzene, etc.
materials	• All electrons are paired.	
Paramagnetic	• Weakly attracted in magnetic field.	Oxygen, Cu^{2+} , Fe^{3+} , Cr^{3+} , etc.
materials	• Unpaired electrons are present.	
	• Permanent magnetisation is not possible.	
Ferromagnetic	• Strongly attracted in magnetic field.	Fe, Co, Ni, Gd, CrO ₂ , etc.
materials	• Unpaired electrons are present.	
	• Permanent magnetisation is possible.	

Formulae

1. Density (ρ) = $\frac{M n}{a^3 N_A}$ Where M = molar mass of substance (g/mol), n = number of particles in a cubic unit cell, a = edge length (cm), N_A = Avogadro number (6.022 × 10²³ mol⁻¹) 2. Packing efficiency = $\frac{\text{Volumeoccupied by particles in unit cell}}{\text{Total volume of unit cell}} \times 100$ 3. Relationship between radius of atom (r) and edge length (a): sc: r = $\frac{a}{2}$ = 0.5000 a bcc: r = $\frac{\sqrt{3}}{4}$ a = 0.4330 a

fcc: $r = \frac{\sqrt{2}}{4}a = 0.3535 a$

sc: D = edge length = a

bcc: D =
$$\frac{1}{2}$$
 × body diagonal = $\frac{\sqrt{3}}{2}$ a
fcc: D = $\frac{1}{2}$ × face diagonal = $\frac{a}{\sqrt{2}}$

5. Volume of one particle in unit cell: sc: 0.5237 a³ bcc: 0.34 a³ fcc: 0.185 a³

6. Total volume occupied by particles in unit cell:
sc: 0.5237 a³
bcc: 0.68 a³
fcc: 0.74 a³

7. Number of atoms in x g of metal = $\frac{x n}{\rho a^3}$

8. Number of unit cells in x g of metal = $\frac{x}{\rho a^3}$

- 9. Number of unit cells in volume (V) of metal = $\frac{V}{a^3}$
- 10. Conversion factors: 1 Å = 1 × 10⁻⁸ cm = 1 × 10⁻¹⁰ m = 100 pm 1 pm = 1 × 10⁻¹⁰ cm

Classwork

1.3 Classification of crystalline solids

- 1. Which among the following solids is a non-polar solid? [MHT CET 2016]
 - (A) Hydrogen chloride
 - (B) Sulphur dioxide
 - (C) Water
 - (D) Carbon dioxide
- 2. Match the following.

	List - I		List - II
i.	Polar molecular	a.	Positive ions in a
	solids		sea of delocalized
			electrons
ii.	Ionic solids	b.	Covalent bonding
iii.	Metallic solids	c.	London forces
iv.	Network solids	d.	Dipole-dipole
			interaction
		e.	Coulombic or
			electrostatic
			interaction

- (A) i-d, ii-e, iii-a, iv-b
- (B) i-c, ii-e, iii-a, iv-b
- (C) i-c, ii-a, iii-e, iv-d
- $(D) \quad i-e,\,ii-d,\,iii-c,\,iv-a$

1.5 Cubic system

3. The contribution of particle at the edge centre to a particular unit cell is _____.

(A)	1/2	(B)	1/4
(C)	1	(D)	1/8

4. How many total spheres of constituent particles are present in bcc type of unit cell?

			[MHT CET 2019]
A)	2	(B)	1
C)	4	(D)	3

5. What is the difference between the number of atoms per unit cell in face-centred cube and the number of atoms per unit cell in body-centred cube?

(\mathbf{C})	2	(D)	6
(C)	4	(D)	C

6. Suppose the mass of a single Ag atom is 'm'. Ag metal crystallizes in fcc lattice with unit cell of length 'a'. The density of Ag metal in terms of 'a' and 'm' is

(A)	$\frac{4m}{a^3}$	(B)	$\frac{2m}{a^3}$
(C)	$\frac{\mathrm{m}}{\mathrm{a}^3}$	(D)	$\frac{m}{4a^3}$

7.

At T (K), copper (atomic mass = 63.5 u) has fcc unit cell structure with edge length of x Å. What is the approximate density of Cu in g cm⁻³ at that temperature? ($N_A = 6.0 \times 10^{23} \text{ mol}^{-1}$)

(A)	$\frac{42.3}{x^3}$	(B)	$\frac{4.23}{x^3}$
(C)	$\frac{423}{x^3}$	(D)	$\frac{212}{x^3}$

8. Lithium has a bcc structure. Its density is 530 kg m⁻³ and its atomic mass is 6.94 g mol⁻¹. Calculate the edge length of a unit cell of lithium metal. ($N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$)

(A)	527 pm	(B)	264 pm
(C)	154 pm	(D)	352 pm

9. A metal has a fcc lattice. The edge length of the unit cell is 404 pm. The density of the metal is 2.72 g cm^{-3} . The molar mass of the metal is

10. Iron exhibits bcc structure at room temperature. Above 900 °C, it transforms to fcc structure. The ratio of density of iron at room temperature to that at 900 °C (assuming molar mass and atomic radii of iron remains constant with temperature?

(A)
$$\frac{\sqrt{3}}{\sqrt{2}}$$
 (B) $\frac{4\sqrt{3}}{3\sqrt{2}}$

(C)
$$\frac{3\sqrt{3}}{4\sqrt{2}}$$
 (D) $\frac{1}{2}$

1.6 Packing of particles in crystal lattice

11.	Whic	ch metal	crystallizes	in a	a simple o	cubic
	struc	ture?		[M]	HT CET 20)16]
	(A)	Poloniu	m (B	s) (Copper	
	(C)	Nickel	(E) I	ron	
12.	Whic	ch among	the following	g me	tal crystalli	se as

a simple cube? [MHT CET 2018] (A) Polonium (B) Iron (C) Copper (D) Gold

 A_2B_5

AB₂

1.7 Packing efficiency

13. The vacant space in bcc lattice unit cell is $\overline{(A) \quad 23\%}$ (B) 32%

(C) 26% (D) 48%

- 14. What is the packing efficiency of arrangement in a body-centred unit cell?
 - (A)64.00%(B)68.00%(C)74.00%(D)53.26%
- 15. In face-centred cubic unit cell, what is the volume occupied? [MHT CET 2016]
 - (A) $\frac{4}{3}\pi r^3$ (B) $\frac{8}{3}\pi r^3$ (C) $\frac{16}{3}\pi r^3$ (D) $\frac{64r^3}{3\sqrt{3}}$
- 16. Sodium metal crystallizes in a body-centred cubic lattice with a unit cell edge of 4.29 Å. The radius of sodium atom is approximately

$\overline{(A)}$	1.86 Å	(B)	3.22 Å
(C)	5.72 Å	(D)	0.93 Å

- 17. If the edge of a body centred unit cell is 400 pm, what will be the approximate radius of the atom present in it? (in pm)
 (A) 200
 (B) 141
 (C) 173
 (D) 924
- 18. A given metal crystallizes out with a cubic structure having edge length of 361 pm. If there are four metal atoms in one unit cell, what is the radius of one atom?

(A)	40 pm	(B)	127 pm
(C)	80 pm	(D)	108 pm

19. AB crystallizes in a body-centred cubic lattice with edge length 'a' equal to 387 pm. The distance between two oppositely charged ions in the lattice is _____.

(A)	335 pm	(B)	250 pm
(C)	200 pm	(D)	300 pm

20. A metal crystallizes in a face-centred cubic structure. If the edge length of its unit cell is 'a', the closest approach between two atoms in metallic crystal will be _____.

(A)	2a	(B)	$2\sqrt{2}$ a
(C)	$\sqrt{2}$ a	(D)	$\frac{a}{\sqrt{2}}$

21. The number of atoms in 2.4 g of body-centred cubic crystal with edge length 200 pm is _____. (density = 10 g cm⁻³, $\frac{1000}{1000}$

 $N_A = 6 \times 10^{23}$ atoms/mol)

(A) 6×10^{23} (B) 6×10^{19} (C) 6×10^{22} (D) 6×10^{20}

- 22. An element has body-centred cubic structure with a cell edge length of 300 pm. If the density of the element is 7.2 g cm⁻³, the number of unit cells in 194.4 g of the element is _____.
 - (A) 2.0×10^{24} (B) 6.0×10^{24} (C) 3.0×10^{24} (D) 1.0×10^{24}
- 23. In a face centred cubic lattice, atom A occupies the corner positions and atom B occupies the face centre positions. If one atom of B is missing from one of the face centred points, the formula of the compound is:
- 24. The atoms of element 'Y' form hexagonal close packing and the atoms of element X occupies $\frac{2}{3}$ rd portion of the number of tetrahedral voids.

Write the formula of the compound formed by X and Y.

(A)
$$X_2Y_2$$
 (B) X_2Y
(C) X_3Y_4 (D) X_4Y_3

25. A compound is formed by elements 'X' (cations) and 'Y' (anions). Ions of 'Y' form cubic close packing (ccp) and ions of 'X' occupy all the octahedral voids. What is the molecular formula of the compound?

(A)	XY_2	(B)	XY
(C)	X_2Y_3	(D)	X_2Y

26. Element 'B' forms ccp structure and 'A' occupies half of the octahedral voids, while oxygen atoms occupy all the tetrahedral voids. The structure of bimetallic oxide is ______.

(A)	AB_2O_4	(B)	A_4B_2O	
(C)	A_2B_2O	(D)	A_2BO_4	

27. A compound is formed by cation C and anion A. The anions form hexagonal close packed (hcp) lattice and the cations occupy 75% of octahedral voids. The formula of the compound is

(A)	C_3A_2	(B)	C_3A_4
(C)	C_4A_3	(D)	C_2A_3

- A crystalline solid XY₃ has ccp arrangement for its element Y. X occupies _____.
 - (A) 66% of tetrahedral voids
 - (B) 33% of tetrahedral voids
 - (C) 66% of octahedral voids
 - (D) 33% of octahedral voids

1.8 Crystal defects or imperfections

- 29. Which type of 'defect' has the presence of cations in the interstitial sites?
 - (A) Schottky defect
 - (B) Vacancy defect
 - (C) Frenkel defect
 - (D) Metal deficiency defect
- 30. Which one of the following compounds show both Schottky and Frenkel defects?
 - (A) KCl (B) AgI
 - (C) AgBr (D) AgCl
- 1 mole of NaCl is doped with 10⁻⁵ mole of SrCl₂. The number of cationic vacancies in the crystal lattice will be _____.
 - (A) 6.022×10^{23}
 - (B) 12.044×10^{20}
 - (C) 6.022×10^{18}
 - (D) 6.022×10^{15}
- 32. Formula of nickel oxide with metal deficiency defect in its crystal is $Ni_{0.98}O$. The crystal contains Ni^{2+} and Ni^{3+} ions. The fraction of nickel existing as Ni^{2+} ions in the crystal is

(A)	0.31	(B)	0.96
(C)	0.04	(D)	0.50

1.10 Magnetic properties of solids

33. Which of these species will have non-zero magnetic moment?

(A)	Na ⁺	(B)	Mg
(C)	F-	(D)	Ar^{+}

- 34. Select a ferromagnetic material from the following.
 - (A) Dioxygen
 - (B) Chromium(IV) oxide
 - (C) Benzene

(C) 4 Å

(D) Dihydrogen monoxide

Miscellaneous

35. Volume occupied by single CsCl ion pair in a crystal is 7.014×10^{-23} cm³. The smallest Cs – Cs internuclear distance is equal to length of the side of the cube corresponding to volume of one CsCl ion pair. The smallest Cs to Cs internuclear distance is nearly _____. (A) 4.4 Å (B) 4.3 Å

(D)

4.5 Å

1. Which of the following statements is TRUE? (A) Both crystalline and amorphous solids

Types of solids

1.2

(A) Both crystalline and amorphous solids are isotropic.

Homework

- (B) Both crystalline and amorphous solids are anisotropic.
- (C) Crystalline solids except those having cubic structure are isotropic and amorphous solids are anisotropic.
- (D) Crystalline solids except those having cubic structure are anisotropic and amorphous solids are isotropic.
- 2. Which among the following will show anisotropy?
 - (A) Glass(B) Barium chloride(C) Wood(D) Tar
- 3. Statement 1: NaNO₃ and CaCO₃ are isomorphous pairs.

Statement 2: They have the same atomic ratios of the constituent atoms.

Statement 3: They have different crystal structures. Select the appropriate option.

- (A) All the statements are correct.
- (B) All the statements are incorrect.
- (C) Only statement 3 is incorrect.
- (D) Only statement 2 is incorrect.

1.3 Classification of crystalline solids

- 4. LiF is a/an _____ crystal.
 - (A) ionic (B) metallic
 - (C) covalent (D) molecular
- 5. Carborandum and benzoic acid are examples of ______ crystals respectively.
 - (A) molecular, metallic
 - (B) ionic, covalent network
 - (C) covalent network, molecular
 - (D) metallic, ionic

6. The interparticle forces in solid hydrogen are

- (A) dipole-dipole interactions
- (B) covalent bonds
- (C) coordinate bonds
- (D) London forces
- 7. At low temperature and high pressure, SO₂ freezes to form crystalline solid. Which term best describes the solid?
 - (A) Ionic crystal (B) Covalent crystal
 - (C) Metallic crystal (D) Molecular crystal

- 8. In graphite, carbon atoms in the hexagonal rings are joined together due to _____.
 - (A) ionic bonding
 - (B) coordinate bonding
 - (C) metallic bonding
 - (D) covalent bonding
- 9. Match the following:

	Crystalline solids		Types
i.	CaF ₂	a.	Molecular solids
ii.	CH ₄	b.	Ionic solid
iii.	Lithium	c.	Covalent network solid
iv.	Diamond	d.	Metallic solid

- (A) i-b, ii-a, iii-c, iv-d
- (B) i-b, ii-a, iii-d, iv-c
- (C) i-c, ii-a, iii-d, iv-b
- (D) i-a, ii-b, iii-d, iv-c
- 10. Among the following, which crystal will be soft and has low melting point?

(A)	Covalent	(B)	Ionic	

- (C) Metallic (D) Molecular
- 11. A crystalline solid is hard, brittle and electrically nonconductor. But its melt conducts electricity. What type of solid is it?
 - (A) Covalent (B) Ionic
 - (C) Metallic (D) Molecular
- 12. Select the INCORRECT statement.
 - (A) Ionic solids become good conductors only at low temperature, below their melting points.
 - (B) The conductivity of covalent solids is in general low and increases with temperature.
 - (C) In covalent solids, there is no abrupt rise in conductivity when substance is melted.
 - (D) Both ionic and covalent solids are hard and have high melting and boiling points.

1.4 Crystal structure

- 13. There are kinds of unit cells in rhombohedral and orthorhombic crystal systems respectively.
 - (A) 2,4 (B) 1,1 (C) 1,2 (D) 1,4
- 14. Which of the following is INCORRECT?
 - (A) A bcc unit cell has eight corner particles and an additional particle at the centre of the cube.
 - (B) A fcc unit cell has total four particles per unit cell.
 - (C) The particle at the centre of a unit cell is not shared by any other unit cells.
 - (D) A fcc unit cell has particles at the eight corners plus particles at the centre of any two faces.

1.5 Cubic system

- 15. In a face-centred cubic cell, an atom at the face contributes is _____ to the unit cell.
 - (A) 1/4 part (B) 1/8 part (C) 1/6 part (D) 1/2 part
 - 1/0 part (D)
- 16. Na and Mg crystallize in bcc and fcc type crystals respectively, then the number of atoms of Na and Mg present in the unit cell of their respective crystal is _____.
 - (A) 4 and 2
 (B) 9 and 14
 (C) 14 and 9
 (D) 2 and 4
- 17. A sample of an element occurring in the bcc structure has 12.08×10^{23} unit cells. The total number of atoms of the element in these sample will be
 - (A) 24.16×10^{23} (B) 36.18×10^{23} (C) 6.04×10^{23} (D) 12.08×10^{23}
- 18. An element (atomic mass 100 g/mol) having bcc structure has unit cell edge 400 pm. The density of the element is _____.

$[N_A = 6.0 \times 10^{23} \text{ atom}]$	mol^{-1}]	
(A) $10.3 \text{ g} / \text{cm}^3$	(B)	$5.2 \text{ g} / \text{cm}^3$
(C) 7.3 g / cm ³	(D)	$2.1 \text{ g} / \text{cm}^3$

19. Iridium (atomic mass 192.2 g/mol) having fcc structure has density of 22.4 g/cm³. The volume of a single unit cell is _____.

(A) $2.7 \times 10^{-23} \text{ cm}^3$ (B) $3.7 \times 10^{-23} \text{ cm}^3$ (C) $4.7 \times 10^{-23} \text{ cm}^3$ (D) $5.7 \times 10^{-23} \text{ cm}^3$

1.6 Packing of particles in crystal lattice

- 20. In which of the following, the spheres of the upper layers are exactly above the spheres of the lower layers?
 - (A) Two dimensional ABAB type arrangement
 - (B) Three dimensional ABAB type arrangement
 - (C) Three dimensional AAAA type arrangement
 - (D) Three dimensional ABCABC type arrangement
- 21. The three dimensional ABCABC type arrangement is the same as _____.
 - (A) bcc structure
 - (B) simple cubic structure
 - (C) planar square close packed structure
 - (D) face-centred cubic structure
- 22. Select the CORRECT option.
 - (A) Two dimensional hexagonal close packed layer has octahedral voids which is formed by three spheres.
 - (B) Square close packing in two dimensions is represented as AAAA type.

- Square close packing in two dimensions (C) is more efficient as compared to hexagonal close packing in two dimensions.
- In three dimensional hexagonal close (D) packed structure, the spheres of the third layer do not align with the spheres of the first layer.
- 23. The number of octahedral sites per sphere in a fcc structure is _____.

(A)	8	(B)	4
(C)	2	(D)	1

A metal sample has 5×10^4 fcc unit cells. The 24. total number of tetrahedral voids present are

(A)	4×10^{4}	(B)	4×10^5
(C)	8×10^{5}	(D)	2×10^{6}

Packing efficiency 1.7

25. The CORRECT statement is:

- (A) Out of the three cubic lattices, bodycentred cubic lattice makes the most efficient use of space.
- (B) Out of the three cubic lattices, facecentred cubic lattice has the least efficient packing.
- (C) Both hep and ccp lattice have coordination number equal to 8.
- Both hcp and ccp lattice have same (D) packing efficiency.
- In face-centred cubic unit cell, the edge length is 26.

(B) (A) (D) $\frac{\sqrt{3}}{2}$ (C) 2r

If 'a' stands for the edge length of the cubic 27. systems: simple cubic, body-centred cubic and face-centred cubic, then the ratio of radii of the spheres in these systems will be respectively.

(A)
$$\frac{1}{2}a:\frac{\sqrt{3}}{2}a:\frac{\sqrt{3}}{\sqrt{2}}a$$

(B) $1a:\sqrt{3}a:\sqrt{2}a$
(C) $\frac{1}{2}a:\frac{\sqrt{3}}{4}a:\frac{\sqrt{2}}{4}a$
(D) $\frac{1}{2}a:\sqrt{3}a:\frac{1}{\sqrt{2}}a$

28. Potassium crystallizes in a bcc lattice, hence the coordination number of potassium in potassium metal is _____.

(A)	0	(B)	4
(C)	6	(D)	8

- 29. The number of close neighbour in a face-centred cubic lattice of identical spheres is .
 - (A) 8 (B) 6 (C) 4 (D) 12
- The edge of unit cell of fcc Xe crystal is 30. 620 pm. The radius of Xe atom is (A) 219.2 pm (B) 235.1 pm
 - (C) 189.3 pm (D) 209.8 pm
- 31. An element with atomic radius of 0.14 nm crystallizes in fcc unit cell. The length of the side of the unit cell is approximately (B) 0.4 nm (A) 0.9 nm
 - (C) 0.2 nm (D) 0.6 nm
- 32. The number of atoms in 100 g of a fcc crystal with density $d = 10 \text{ g} / \text{cm}^3$ and cell edge equal to 100 pm, is equal to .
 - (B) 3×10^{25} (D) 1×10^{25} (A) 4×10^{25}
 - (C) 2×10^{25}
- 33. A metallic element crystallizes in simple cubic lattice. Each edge length of the unit cell is 3 Å. The density of the element is 8 g cm⁻³. Number of unit cells in 108 g of the metal is (Molar mass of the metal = 108 g/mol.) (A) 1.33×10^{20} (B) 2.7×10^{22} (C) 5×10^{23} (D) 2×10^{24}
- 34. Aluminium crystallizes in cubic close packed structure with unit cell edge length of 353.6 pm. How many unit cells are there in 1.00 cm³ of Al?
 - (A) 2.26×10^{22} (B) 4.42×10^{22} (C) 5.36×10^{22} (D) 7.07×10^{22}
- An alloy of Cu, Ag and Au is found to have 35. copper constituting the ccp lattice. If silver atoms occupy the edge centre and gold is present at body centre, the alloy has a formula
 - Cu₄Ag₂Au (B) Cu₄Ag₄Au (A) Cu₄Ag₃Au (C) (D) CuAgAu
- 36. A compound alloy of gold and copper crystallizes in a cubic lattice in which the gold atoms occupy the lattice points at the corners of cube and copper atoms occupy the centres of each of the cube faces. The formula of this compound is (A) AuCu (B) AuCu₂
 - AuCu₃ (D) (C) Au₂Cu
- 37. In Corundum, oxide ions are arranged in hcp arrangement and aluminium ions occupy two third of the octahedral holes. Its formula is

$\overline{(A)}$	Al ₂ O ₃	(B)	Al ₂ O ₄
(C)	Al_2O_2	(D)	AlO_2

- 38. In a solid, oxide ions are arranged in ccp. Cations A occupy one-sixth of the tetrahedral voids and cations B occupy one-third of the octahedral voids. The formula of the compound is _____.
 - $\begin{array}{ccccc} (A) & ABO_3 & (B) & AB_2O_3 \\ (C) & A_2BO_3 & (D) & A_2B_2O_3 \end{array}$

1.8 Crystal defects or imperfections

- 39. Which of the following is INCORRECT about Schottky defect?
 - (A) Electrical neutrality is not maintained.
 - (B) Density decreases due to this defect.
 - (C) Some other ions are missing from normal lattice sites.
 - (D) It is a type of stoichiometric defects.
- 40. Frenkel defect is caused due to _____
 - (A) an ion missing from the normal lattice site creating a vacancy
 - (B) an extra positive ion occupying an interstitial position in the lattice
 - (C) an extra negative ion occupying an interstitial position in the lattice
 - (D) the shift of a positive ion from its normal lattice site to an interstitial site

41. Identify the INCORRECT statement.

- (A) Metal deficiency defect is possible only in compounds of metals that show variable oxidation states.
- (B) Metal excess defect due to anion vacancy imparts colour to the colourless crystal.
- (C) Nonstoichiometric defect causes change in the crystal structure.
- (D) $Zn_{1+x}O_{1,0}$ is an example of metal excess defect.

42. Following diagram represents

- (A) formation of self-interstitial defect
- (B) formation of vacancy through aliovalent impurity
- (C) substitutional impurity defect
- (D) metal deficiency defect

1.9 Electrical properties of solids

- 43. Which of the following statements is CORRECT?
 - (A) In metals, the band gap is very small and in insulators, the band gap is very large.
 - (B) Band gap is very large in metals and insulators.
 - (C) Band gap is very small in metals and insulators.
 - (D) In metals, the band gap is very large and in insulators, the band gap is very small.
- 44. Silicon is a _____ as it conducts electricity better than _____ but not as efficient as
 - (A) conductor, metals, nonmetals
 - (B) semiconductor, nonmetals, metals
 - (C) semiconductor, metals, non-metals
 - (D) conductor, nonmetals, metals
- 45. In metallic magnesium, the 3s band is ______ band while the 3p band is ______.
 - (A) vacant, partially filled
 - (B) partially filled, vacant
 - (C) completely filled, partially filled
 - (D) completely filled, vacant
- 46. When suitable impurity is added to pure intrinsic semiconductor, the electrical conductivity _____.
 - (A) is enhanced
 - (B) remains same
 - (C) decreases to a large extent
 - (D) decreases slightly
- 47. To get a n-type semiconductor, the impurity to be added to silicon should have which of the following number of valence electrons?
 - (A) 1 (B) 2 (C) 3 (D) 5
- 48. Silicon doped with arsenic is an example of
 - (A) p type semiconductor
 - (B) n type semiconductor
 - (C) insulator
 - (D) intrinsic semiconductor
- 49. Doping of silicon with boron leads to _____.
 - (A) n-type semiconductor
 - (B) p-type semiconductor
 - (C) metal
 - (D) insulator
- 50. Identify p-type semiconductor.
 - (A) Si doped with As (B) Ge doped with As
 - (C) Si doped with P (D) Ge doped with In

мнт	-CET Chemistry (MCQs)	e		
<u>1.10</u> 51. 52. <u>Misc</u> 53.	 Magnetic properties of solids Which of the following statements is CORRECT? (A) Paramagnetic substances are attracted by the magnetic field. (B) Paramagnetic substances are strongly repelled by the magnetic field. (C) Diamagnetic substances are neither attracted nor repelled by the magnetic field. (D) Diamagnetic substances are strongly attracted by the magnetic field. Which of the following is NOT ferromagnetic in nature? (A) Ni (B) Co (C) CrO₂ (D) O₂ ellaneous The following statements are CORRECT, EXCEPT: 	54.	 (C) (D) Identi (A) (B) (C) (D) 	Single granule of a polycrystalline solid is made of many single crystals or crystallites packed together with different orientations. In molecular solids, the constituent particles are monoatomic or polyatomic molecules. fy the INCORRECT statement. The larger the coordination number, the closer are the spheres to each other. The coordination number of any sphere in hcp structure is 12. Crystal defects can be minimized by carrying out crystallization at a slower rate. Paramagnetic substances can be permanently magnetised.
_	 (A) Diamond (the hardest known substance) is an example of naturally formed single crystal. (B) Calcite and aragonite are two polymorphic forms of silica. 			
	Previous Yea	ars' Que	estions	
1. 2. 3.	Lithium crystallises into body centered cubic structure. What is the radius of lithium if edge length of it's unit cell is 351 pm ? [MHT CET 2020] (A) 75.50 pm (B) 151.98 pm (C) 240.80 pm (D) 300.50 pm The edge length of fcc type unit cell of copper having atomic radius 127.6 pm is equal to 	7. 8. 9.	Calcu metal structu (densi (A) (C) What lattice (A) Calcu densit contai (A) (C) What	late the number of atoms in 20 grams which crystallises to simple cubic ure having unit cell edge length 340 pm. (MHT CET 2022] 4.95×10^{22} (B) 5.81×10^{22} 5.19×10^{22} (D) 5.42×10^{22} is the co-ordination number of hcp crystal 2? [MHT CET 2022] 8 (B) 12 (C) 6 (D) 4 late the molar mass of metal having y 22.4 g cm ⁻³ , crystallizes to form unit cell ining 4 particles. (a ³ = 5.6×10^{-23} cm ³) [MHT CET 2022] 280.2 g mol ⁻¹ (B) 210.6 g mol ⁻¹ 140 g mol ⁻¹ (D) 188.8 g mol ⁻¹ are the number of octahedral and
5.	corner in unit cell of cubic system? [MHT CET 2021] (A) $\frac{1}{2}$ (B) $\frac{1}{8}$ (C) $\frac{1}{4}$ (D) $\frac{1}{6}$ If 'a' is edge length of a simple cubic unit cell then atomic radius is given as [MHT CET 2021] (A) 0.1 a (B) 0.5 a (C) a (D) 1.5 a What is the value of density of an element	10.	(A) (B) (C) (D) Calcu	are the number of octahedral and edral voids in 0.3 mole substance ctively if it forms hcp structure? [MHT CET 2023] 1.8066×10^{23} and 3.6132×10^{23} 3.6132×10^{23} and 1.8066×10^{23} 6.022×10^{23} and 12.044×10^{23} 12.044×10^{23} and 6.022×10^{23} late the molar mass of an element having w 7.8 g cm ⁻³ that forms hcc unit cell
	having bcc structure with edge length 5 A°?(Atomic mass = 70 g mol ⁻¹)[MHT CET 2021](A) $4.35 g cm^{-3}$ (B)(C) $5.35 g cm^{-3}$ (D)1.86 g cm^{-3}		$[a^3.N_A]$ (A) (C)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Chapter 01: Solid State

12.	Iden follo	ntify t owing	he goo band	od con gap ei	nducto nergy v	r of value	electric s of so	city fi lids.	rom		(C) (D)) Fr) Sc	enkel hottky	defec / defe	t ct				
	S	Solid		Eg	ap					17.	Ca	lculat	e the i	radius	of an	atom	n of m	etal ir	n fcc
		A D		$\frac{5.4}{0.0}$	$\frac{eV}{eV}$						uni	t cell	having	g edge	e lengt	h 500	pm.	тт э	0241
		<u>Б</u> С		0.0	eV						(A)	25	0 12 r	m	(B)	ин I С 216 56	EI Z	024]
		D	_	0.67	eV						(C)	17	6.75 p	m	(D)	275.04	pm	
	L						НТ СБ	ст 20	231	18	Cal	lculat	e the	num	ber o	of na	rticles	ner	unit
	(A)	Α	(B)	B	(C) (C (1	D) 1	D	10.	cel	l of 7 g m	an	elem	ent l	having	g mo	lar 1 ³ for	mass
13.	Calc	culate	the ed	ge len	gth of	bcc u	init cel	l if rad	dius		cut	ic un	it cell.	ina a	JIISIty	17.7	g cili		inng
	(A)	$\frac{10}{4}$	4×10	227 pi ⁻⁸ cm	n. (B	וועון 5 (1	11 CF	ы 20 10 ⁻⁸ ст	2 3] m		a	×N,	= 40 0	cm ³ m	01^{-1}	[M	HT C	ет 20)24]
	(\mathbf{C})	6.4	2×10	$^{-8}$ cm	(D (D) 1	.135 ×	10-8	cm		(A)) 1	(E	3) 2	(C)	4	(D)	6
14.	Whi for c	ch fro	m follouction	owing of n-ty	combi pe sen	natio	ns is ar ductor?	exan	nple	19.	Ide fol	ntify lowin	fer g.	roma	gnetic	su [N	ibstanc IHT C	e ET 2	from 024]
	(A)	Si o	doped	with H	3 (B	[M) S	HT CH	E T 20 d with	23] 1 P		(A)) Na	aCl		(.	B)	C6H6 H2O		
	(C)	Si	doped	with (Ga (D) S	i dope	d witl	n In	20.	Ca	lculat	e mol	lar m	ass of	f an	eleme	nt ha	ving
15.	Calc 210	ulate g m	the de ol ⁻¹ th	nsity (at for	of met ms sir	al hav nple	ving me cubic	olar n unit (nass cell.		der [a ³	nsity × NA	8.6 g = 22 (cm^{-3} cm^{3}	if it mol ⁻¹⁻	form	ns bee	strue ET 2	cture 0241
	$(a^3.]$	$N_A = 2$	21.5 cn	n ³ mol	⁻¹)		IT CE	T 202	23]		(A)) 10	6.18 g	g mol⁻	1 (B)	94.6 g	mol ⁻¹]
	(A) (C)	9.7 8.1	/ g cm 2 g cm	n^{-3}	(В (D) /) 6	.15 g c .94 g c	m^{-3}			(C)	88	.25 g	mol ⁻¹	() C	D)	80.16	g mol	-1
16.	Wha	at typ	e of de	fect is	s found	l in b	rass?			21.	Ca. bcc	culat	e the cell ha	radius	edge l	ength	atom 1 530 pi	f 1t fo n.	orms
		~ .				[M	HT CI	E T 2 0	24]				0.5	Ū.	-	[M		ET 2	024]
	(A) (B)	Sul Va	ostituti cancy	onal i defect	mpuri	ty def	fect				(A) (C)) 22	9.5 pr 9.0 pr	n n	() ()	B) D)	187.4 j 265.2 j	om om	
				(6			A	nswei	r Key	7								
Cla	sswoi	rk																	
1.	(D)	2.	(A)	3.	(B)	4.	(A)	5.	(A)	6.	(A)	7.	(C)	8.	(D)	9.	(C)	10.	(C)
11.	(A)	12.	(A)	13.	(E)	14.	(B)	15.	(C)	16.	(A)	17.	(C)	18.	(E)	19.	(A)	20.	(D)
21.	(C)	22.	(D)	23.	(B)	24.	(D)	25.	(B)	26.	(A)	27.	(B)	28.	(D)	29.	(C)	30.	(C)
31.	(C)	32.	(B)	33.	(D)	34.	(B)	35.	(C)										
Hon	newor	· k																	
1.	(D)	2.	(B)	3.	(C)	4.	(A)	5.	(C)	6.	(D)	7.	(D)	8.	(D)	9.	(B)	10.	(D)
11.	(B)	12.	(A)	13.	(D)	14.	(D)	15.	(D)	16.	(D)	17.	(A)	18.	(B)	19.	(D)	20.	(C)
21.	(D)	22.	(B)	23.	(D)	24.	(B)	25.	(D)	26.	(B)	27.	(C)	28.	(D)	29.	(D)	30.	(A)
31.	(B)	32.	(A)	33.	(C)	34.	(A)	35.	(C)	36.	(C)	37.	(A)	38.	(A)	39.	(A)	40.	(D)
41.	(C)	42.	(D)	43.	(A)	44.	(B)	45.	(D)	46.	(A)	47.	(D)	48.	(B)	49.	(B)	50.	(D)
51.	(A)	52.	(D)	53.	(B)	54.	(D)												
Prev	vious	Year	's' Qu	lestio	ns														
1.	(B)	2.	(A)	3.	(C)	4.	(B)	5.	(B)	6.	(D)	7.	(C)	8.	(B)	9.	(D)	10.	(A)
11.	(A)	12.	(B)	13.	(B)	14.	(B)	15.	(A)	16.	(A)	17.	(C)	18.	(C)	19.	(C)	20.	(B)
	(Λ)																		

Published by:

🕲 B2, 9th Floor, Ashar, Road No. 16/Z, Wagle Industrial Estate, Thane (W)-400604 | 🕲 88799 39712 / 14 | 😒 88799 39713 / 15

www.targetpublications.org mail@targetpublications.org