

Target Publications Pvt. Ltd.

Written as per the latest syllabus prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune.

Mathematics part-॥

STD.IX

Salient Features

- Written as per the new textbook.
- Exhaustive coverage of entire syllabus.
- Topic-wise distribution of textual questions and practice problems at the beginning of every chapter.
- Covers solutions to all practice sets and problem sets.
- Includes additional problems for practice.
- MCQs for preparation of competitive examinations.
- Includes practice test for each chapter.
- Constructions drawn with accurate measurements.

Printed at: India Printing Works, Mumbai

(C) Target Publications Pvt. Ltd.

No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

PREFACE

Preparing this 'Mathematics Part - II' book was a rollercoaster ride. We had a plethora of ideas, suggestions and decisions to ponder over. However, our basic premise was to keep this book in line with the new, improved syllabus and to provide students with an absolutely fresh material.

Mathematics Part - II covers several topics including basic concepts in geometry, logical proofs, trigonometry, co-ordinate geometry and surface area and volume. The study of these topics requires a deep and intrinsic understanding of concepts, terms and formulae. Hence, to ease this task, we present 'Std. IX: Mathematics Part - II' - a complete and thorough guide, extensively drafted to boost the confidence of students.

For better understanding of different types of questions, topic-wise distribution of textual questions and practice problems has been provided at the beginning of every chapter. Before each practice set, short and easy explanation of different concepts with illustrations for better understanding is given. Solutions and proofs to textual questions and examples are provided in a lucid manner.
'Multiple Choice Questions' based on each chapter facilitate students to prepare for competitive examinations.
'Additional problems for practice' includes additional unsolved problems for practice to help the students sharpen their problem solving skills. 'Solved examples' from textbook are included in this section.
'Apply your knowledge' covers all the textual activities and projects along with their answers.
Every chapter ends with a 'Practice Test'. This test stands as a testimony to the fact that the child has understood the chapter thoroughly.

All the diagrams are neat and have proper labelling. The book has a unique feature that all the constructions are as per the scale.

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on : mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops.

From,
Best of luck to all the aspirants!

Publisher

Edition: First

Disclaimer

This reference book is transformative work based on textual contents published by Bureau of Textbook. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.
© reserved with the Publisher for all the contents created by our Authors.
No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

No.	Topic Name	
	1	Basic Concepts in Geometry
2	Parallel Lines	Page No.
3	Triangles	1
4	Constructions of Triangles	16
5	Quadrilaterals	35
6	Circle	73
7	Co-ordinate Geometry	86
8	Trigonometry	119
9	Surface Area and Volume	145

Solved examples from textbook are indicated by "+".

2 Parallel Lines

Type of Problems	Practice Set	Q. Nos.
Parallel lines, interior angle theorem, corresponding angle theorem	Practice Problems	
	Q.1	Q.1, 2, 3, 4, 5, 6

Let's Recall

1. Parallel lines:

Non intersecting coplanar lines are called parallel lines.
In the adjacent figure, line $l \|$ line $\mathrm{m} \|$ line n

2. Transversal:

A line intersecting two or more coplanar lines in distinct points is called transversal.
Line p is a transversal intersecting line m , line n and line l at points A, B and C respectively.

Let's Study

Angles formed by two lines and their transversal

1. Corresponding angles:

Angles whose intersection is a ray and have distinct vertices are called corresponding angles.
In the adjacent figure, $\angle \mathrm{a}$ and $\angle \mathrm{b}$ is a pair of corresponding angles.

2. Alternate angles:

Angles whose intersection is a segment, interiors are separate and have distinct vertices are called alternate angles.
In the adjacent figure, $\angle \mathrm{a}$ and $\angle \mathrm{b}$ is a pair of alternate interior angles, and $\angle \mathrm{d}$ and $\angle \mathrm{e}$ is pair of alternate exterior angles.

3. Interior angles:

Angles whose intersection is a segment, have the same interior and distinct vertices are called interior angles.
In the adjacent figure, $\angle \mathrm{a}$ and $\angle \mathrm{b}$ is a pair of interior angles on the same sides of the transversal.

Some important properties:

1. When two lines intersect, the pairs of vertically opposite angles formed are congruent.
2. The angles in a linear pair are supplementary.
3. When one pair of corresponding angles is congruent, then all the remaining pairs of corresponding angles are congruent.
4. When one pair of alternate angles is congruent, then all the remaining pairs of alternate angles are congruent.
5. When one pair of interior angles on one side of the transversal is supplementary, then the other pair of interior angles is also supplementary.

Try This

1. Angles formed by two lines and their transversal. (Textbook pg. no. 13)

Pairs of corresponding angles
i. $\angle \mathrm{d}, \angle \mathrm{h}$
ii. $\angle \mathrm{a}, \angle \mathrm{e}$
iii. $\angle \mathrm{c}, \angle \mathrm{g}$
iv. $\angle \mathrm{b}, \angle \mathrm{f}$

Pairs of alternate interior angles
i. $\angle \mathrm{c}, \angle \mathrm{e}$
ii. $\angle \mathrm{b}, \angle \mathrm{h}$

Pairs of alternate exterior angles
i. $\angle \mathrm{d}, \angle \mathrm{f}$
ii. $\angle \mathrm{a}, \angle \mathrm{g}$

Pairs of interior angles on the same side of the transversal
i. $\angle \mathrm{c}, \angle \mathrm{h}$
ii. $\angle \mathrm{b}, \angle \mathrm{e}$

Interior angle theorem

Theorem: If two parallel lines are intersected by a transversal, the interior angles on either side of the transversal are supplementary.
Given: line $l \|$ line m , and line n is their transversal.
$\angle \mathrm{a}, \angle \mathrm{b}$ are interior angles formed on one side and $\angle \mathrm{c}, \angle \mathrm{d}$ are interior angles formed on the other side of the transversal.

To prove: $\angle \mathrm{a}+\angle \mathrm{b}=180^{\circ}$
$\angle \mathrm{c}+\angle \mathrm{d}=180^{\circ}$

Proof:

Indirect proof

There are three possibilities.
i. $\angle \mathrm{a}+\angle \mathrm{b}<180^{\circ}$
ii. $\angle \mathrm{a}+\angle \mathrm{b}>180^{\circ}$
iii. $\angle \mathrm{a}+\angle \mathrm{b}=180^{\circ}$

Case I: Let us assume that $\angle \mathrm{a}+\angle \mathrm{b}<180^{\circ}$ is true.
Since $\angle \mathrm{a}+\angle \mathrm{b}<180^{\circ}$,
$\therefore \quad$ If the lines l and m are produced, they will intersect each other on the side of transversal where $\angle \mathrm{a}$ and $\angle \mathrm{b}$ are formed.
But, line $l \|$ line m
$\therefore \quad \angle a+\angle b<180^{\circ}$ is not possible.
[Euclid's postulate]
[Given]
(i)

Case II: Let us assume $\angle \mathrm{a}+\angle \mathrm{b}>180^{\circ}$ is true.
$\therefore \quad \angle \mathrm{a}+\angle \mathrm{b}=180^{\circ}$ and $\angle \mathrm{c}+\angle \mathrm{d}=180^{\circ}$

But, $\angle \mathrm{a}+\angle \mathrm{b}>180^{\circ}$
$\therefore \quad\left[360^{\circ}-(\angle \mathrm{a}+\angle \mathrm{b})\right]<180^{\circ}$
$\therefore \quad \angle \mathrm{c}+\angle \mathrm{d}<180^{\circ}$
$\therefore \quad$ If the lines l and m are produced, they will intersect

$$
\text { each other on the side of transversal where } \angle \mathrm{c} \text { and }
$$ $\angle \mathrm{d}$ are formed.

$$
\begin{aligned}
& \angle \mathrm{a}+\angle \mathrm{b}>180^{\circ} \\
& \text { Here, } \angle \mathrm{a}+\angle \mathrm{d}=180^{\circ} \\
& \text { and } \angle \mathrm{c}+\angle \mathrm{b}=180^{\circ} \\
\therefore \quad & \angle \mathrm{a}+\angle \mathrm{d}+\angle \mathrm{c}+\angle \mathrm{b}=180^{\circ}+180^{\circ}=360^{\circ} \\
\therefore \quad & \angle \mathrm{c}+\angle \mathrm{d}=360^{\circ}-(\angle \mathrm{a}+\angle \mathrm{b})
\end{aligned}
$$

$$
\angle \mathrm{d} \text { are formed. }
$$

But, line $l \|$ line m

$$
\angle \mathrm{c}+\angle \mathrm{d}<180^{\circ} \text { is not posssible. }
$$

i.e. $\angle a+\angle b>180^{\circ}$ is not possible
$\therefore \quad \angle \mathrm{a}+\angle \mathrm{b}=180^{\circ}$ is the only possibility.
(ii)
[From (i) and (ii)]

,

Corresponding angles and Alternate angles theorems

Theorem: The corresponding angles formed by a transversal of two parallel lines are of equal measure.
Given: \quad line $l \|$ line m, and line n is the transversal.
To prove: $\angle \mathrm{a}=\angle \mathrm{b}$

Proof:

$$
\begin{array}{ll|l|l}
& \angle a+\angle c=180^{\circ} \\
& & \text { (i) } & \text { [Angles in a linear pair] } \\
& \text { transversal } l \| \text { line } \mathrm{m}, \text { and line } \mathrm{n} \text { is their } & \\
\text { [Given] } \\
\therefore \quad & \angle b+\angle c=180^{\circ} \\
\therefore \quad & \angle \mathrm{a}+\angle \mathrm{c}=\angle \mathrm{b}+\angle \mathrm{c} \\
\therefore \mathrm{a}=\angle \mathrm{b}
\end{array} \quad \text { (ii) } \left\lvert\, \begin{aligned}
& \text { [Interior angle theorem] } \\
& \text { [From (i) and (ii)] }
\end{aligned}\right.
$$

Theorem: The alternate angles formed by a transversal of two parallel lines are of equal measures.
Given: \quad line $l \|$ line m, and line n is the transversal.

To prove: $\angle \mathrm{a}=\angle \mathrm{c}$

Proof:

$$
\angle a+\angle b=180^{\circ}
$$

line $l \|$ line m , and line n is their transversal

$$
\begin{array}{ll}
\therefore & \angle b+\angle c=180^{\circ} \\
& \angle \mathrm{a}+\angle \mathrm{b}=\angle \mathrm{b}+\angle \mathrm{c} \\
\therefore & \angle \mathrm{a}=\angle \mathrm{c}
\end{array}
$$

(i) [Angles in a linear pair]

[Given]

(ii) [Interior angle theorem]
[From (i) and (ii)]

Example: In the adjoining figure, line $m \|$ line n. Find the measures of $\angle \mathrm{a}, \angle \mathrm{b}, \angle \mathrm{c}, \angle \mathrm{d}$ and $\angle \mathrm{e}$ from the given measure of angle.

Solution:

$$
\begin{array}{ll}
\text { i. } & \mathrm{m} \angle \mathrm{a}+75^{\circ}=180^{\circ} \\
\therefore & \mathrm{m} \angle \mathrm{a}=180^{\circ}-75^{\circ} \\
& \mathbf{m} \angle \mathbf{a}=\mathbf{1 0 5}^{\circ} \\
\text { ii. } & \mathbf{m} \angle \mathbf{b}=\mathbf{7 5}^{\circ}
\end{array}
$$

iii.
line $\mathrm{m} \|$ line n and line l is their transversal.
$\mathrm{m} \angle \mathrm{d}=\mathrm{m} \angle \mathrm{b}$
$\mathrm{m} \angle \mathrm{d}=75^{\circ}$
iv. $\mathrm{m} \angle \mathrm{b}+\mathrm{m} \angle \mathrm{c}=180^{\circ}$
$\therefore \quad 75^{\circ}+\mathrm{m} \angle \mathrm{c}=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{c}=180^{\circ}-75^{\circ}$
$\mathrm{m} \angle \mathrm{c}=105^{\circ}$
v. $\quad \mathrm{m} \angle \mathrm{e}=\mathrm{m} \angle \mathrm{b}$
$\mathrm{m} \angle \mathrm{e}=75^{\circ}$
[Angles in a linear pair]

[Vertically opposite angles]
[Alternate angles]
[Interior angles]
[Corresponding angles]

Practice Set 2.1

1. In the adjoining figure, line RP || line MS and line $\mathbf{D K}$ is their transversal. $\angle \mathrm{DHP}=85^{\circ}$. Find the measures of following angles.
i. $\angle \mathrm{RHD}$
ii. $\angle \mathrm{PHG}$
iii. $\angle \mathrm{HGS}$
iv. $\angle \mathrm{MGK}$

Solution:

i. $\mathrm{m} \angle \mathrm{DHP}+\mathrm{m} \angle \mathrm{RHD}=180^{\circ}$
$\therefore \quad 85^{\circ}+\mathrm{m} \angle \mathrm{RHD}=180^{\circ}$
$\therefore \quad \mathbf{m} \angle \mathbf{R H D}=95^{\circ}$
ii. $\mathrm{m} \angle \mathrm{PHG}=\mathrm{m} \angle \mathrm{RHD}$
$\therefore \quad \mathbf{m} \angle \mathbf{P H G}=\mathbf{9 5}{ }^{\circ}$
iii. line RP || line MS and line DK is their transversal.
$\therefore \quad \mathrm{m} \angle \mathrm{HGS}=\mathrm{m} \angle \mathrm{DHP}$
$\therefore \quad \mathrm{m} \angle \mathrm{HGS}=\mathbf{8 5}{ }^{\circ}$
iv. $\mathrm{m} \angle \mathrm{MGK}=\mathrm{m} \angle \mathrm{HGS}$
$\therefore \quad \mathrm{m} \angle \mathrm{MGK}=\mathbf{8 5}{ }^{\circ}$
[Angles in a linear pair]
[Vertically opposite angles]
[Corresponding angles]
[Vertically opposite angles]
2. In the adjoining figure, line $\mathbf{p} \|$ line q and line l and line m are transversals.
Measures of some angles are shown. Hence find the measures of $\angle \mathrm{a}$, $\angle \mathrm{b}, \angle \mathrm{c}, \angle \mathrm{d}$.

Solution:

i. $\quad 110^{\circ}+\mathrm{m} \angle \mathrm{a}=180^{\circ}$
$\therefore \quad \mathbf{m} \angle \mathbf{a}=70^{\circ}$
ii. line $\mathrm{p} \|$ line q , and line l is their transversal.
$\mathrm{m} \angle \mathrm{e}+110^{\circ}=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{e}=70^{\circ}$
But, $\mathrm{m} \angle \mathrm{b}=\mathrm{m} \angle \mathrm{e}$
$\therefore \quad \mathrm{m} \angle \mathrm{b}=7 \mathbf{0}^{\circ}$
iii. line $\mathrm{p} /$ line q , and line m is their transversal.
$\therefore \quad \mathrm{m} \angle \mathrm{c}=115^{\circ}$
iv. $115^{\circ}+\mathrm{m} \angle \mathrm{d}=180^{\circ}$
$m \angle d=65^{\circ}$
[Angles in a linear pair]
[Interior angles]

[Vertically opposite angles]
[Corresponding angles]
[Angles in a linear pair]
3. In the adjoining figure, line $l \|$ line m and line $n \|$ line p.

Find $\angle \mathrm{a}, \angle \mathrm{b}, \angle \mathrm{c}$ from the given measure of an angle.

Solution:

i. line $l \|$ line m , and line p is their transversal.
$\therefore \quad \mathrm{m} \angle \mathrm{d}=45^{\circ}$
But, $\mathrm{m} \angle \mathrm{d}+\mathrm{m} \angle \mathrm{b}=180^{\circ}$
$\therefore \quad 45^{\circ}+\mathrm{m} \angle \mathrm{b}=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{b}=135^{\circ}$
[Corresponding angles]

[Angles in a linear pair]
ii. $\mathrm{m} \angle \mathrm{a}=\mathrm{m} \angle \mathrm{b}$
$\therefore \quad \mathrm{m} \angle \mathrm{a}=135^{\circ}$
iii. line $\mathrm{n} \|$ line p , and line m is their transversal.
$\therefore \quad \mathrm{m} \angle \mathrm{c}=\mathrm{m} \angle \mathrm{b}$
$\therefore \quad \mathrm{m} \angle \mathrm{c}=135^{\circ}$
[Vertically opposite angles]
[Corresponding angles]

4. In the adjoining figure, sides of $\angle \mathrm{PQR}$ and $\angle \mathrm{XYZ}$ are parallel to each other. Prove that, $\angle \mathrm{PQR} \cong \angle \mathrm{XYZ}$.

Given: \quad Ray $\mathrm{YZ} \|$ ray QR and ray $\mathrm{YX} \|$ ray QP
To prove: $\angle \mathrm{PQR} \cong \angle \mathrm{XYZ}$
Construction: Extend ray YZ in the opposite direction. It intersects ray QP at point S.

Proof:

Ray YX || ray QP
$\therefore \quad$ Ray YX $\|$ ray SP and seg SY is their transversal
$\therefore \quad \angle X Y Z \cong \angle P S Y$
ray $\mathrm{YZ} \|$ ray QR
ray $\mathrm{SZ} \|$ ray QR and seg PQ is their transversal.
$\therefore \quad \angle \mathrm{PSY} \cong \angle \mathrm{SQR}$
$\therefore \quad \angle P S Y \cong \angle P Q R$
$\therefore \quad \angle \mathrm{PQR} \cong \angle \mathrm{XYZ}$

5. In the adjoining figure, line $A B \|$ line $C D$ and line $P Q$ is transversal. Measure of one of the angles is given. Hence find the measures of the following angles.
i. $\angle \mathrm{ART}$
ii. $\angle \mathrm{CTQ}$
iii. $\angle \mathrm{DTQ}$
iv. $\angle \mathrm{PRB}$

Solution:

i. $\quad \mathrm{m} \angle \mathrm{ART}+\mathrm{m} \angle \mathrm{BRT}=180^{\circ}$
$\therefore \quad \mathrm{m} \angle \mathrm{ART}+105^{\circ}=180^{\circ}$
$\mathbf{m} \angle \mathrm{ART}=75^{\circ}$
ii. line $\mathrm{AB} \|$ line CD and line PQ is their transversal.
$\mathrm{m} \angle \mathrm{CTQ}=\mathrm{m} \angle \mathrm{ART}$
$\therefore \quad \mathrm{m} \angle \mathrm{CTQ}=75^{\circ}$
iii. line $\mathrm{AB}|\mid$ line CD and line PQ is their transversal.
$\therefore \quad \mathrm{m} \angle \mathrm{DTQ}=\mathrm{m} \angle \mathrm{BRT}$
$\therefore \quad \mathrm{m} \angle \mathrm{DTQ}=105^{\circ}$
iv $\mathrm{m} \angle \mathrm{PRB}=\mathrm{m} \angle \mathrm{ART}$
$\therefore \quad \mathrm{m} \angle \mathrm{PRB}=75^{\circ}$

Let's Study

Use of properties of parallel lines

Theorem: The sum of the measures of all the angles of a triangle is 180°.
Given: $\quad \triangle \mathrm{PQR}$ is any triangle.
To prove: $\angle \mathrm{QPR}+\angle \mathrm{PQR}+\angle \mathrm{PRQ}=180^{\circ}$.
Construction: Draw line ST through point P such that line $\mathrm{ST} \|$ side QR .

Proof:

line $\mathrm{ST} \|$ side QR and seg PQ is their transversal.
$\therefore \quad \angle P Q R=\angle S P Q$
line $\mathrm{ST} \|$ side QR and seg PR is their transversal.
$\therefore \quad \angle P R Q=\angle T P R$
Adding (i) and (ii), we get

$$
\angle \mathrm{PQR}+\angle \mathrm{PRQ}=\angle \mathrm{SPQ}+\angle \mathrm{TPR}
$$

$\therefore \quad \angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPR}$

$$
\begin{aligned}
& =\angle \mathrm{SPQ}+\angle \mathrm{TPR}+\angle \mathrm{QPR} \\
& =\angle \mathrm{SPQ}+\angle \mathrm{QPT} \\
& =180^{\circ}
\end{aligned}
$$

$\therefore \quad \angle \mathrm{QPR}+\angle \mathrm{PQR}+\angle \mathrm{PRQ}=180^{\circ}$
$\therefore \quad$ The sum of measures of all angles of a triangle is 180°.

[Construction]
(i) [Alternate angles]
[Construction]
(ii) [Alternate angles]

[Adding $\angle \mathrm{QPR}$ to both sides]
$[\because \angle \mathrm{TPR}+\angle \mathrm{QPR}=\angle \mathrm{QPT}]$
[Angles in a linear pair]

Try This

1. In the adjoining figure, how will you decide whether line l and line m are parallel or not?
(Textbook pg. no. 19)
Ans: In the figure, we observe that line l and line m are coplanar and do not intersect each other.

$\therefore \quad$ Line l and line m are parallel lines.

Tests for parallel lines

Whether given two lines are parallel or not can be decided by examining the angles formed by a transversal of the lines.
i. If the interior angles on the same side of a transversal are supplementary, then the lines are parallel.
ii. If one of the pairs of alternate angles is congruent, then the lines are parallel.
iii. If one of the pairs of corresponding angles is congruent, then the lines are parallel.

Interior angles test

Theorem: If the interior angles formed by a transversal of two distinct lines are supplementary, then the two line are parallel.

Given: line EF is the transversal of line AB and line CD .

$$
\angle \mathrm{BPQ}+\angle \mathrm{PQD}=180^{\circ}
$$

To prove: line $\mathrm{AB} \|$ line CD

Proof:

Indirect proof

Suppose line AB is not parallel to line CD.
$\therefore \quad$ They intersect at point R (say).
Since, points P, Q, R are not collinear, they form a triangle.

In $\triangle \mathrm{PQR}$,
$\angle \mathrm{RPQ}+\angle \mathrm{PQR}+\angle \mathrm{PRQ}=180^{\circ}$
$\therefore \quad \angle \mathrm{BPQ}+\angle \mathrm{PQD}+\angle \mathrm{PRQ}=180^{\circ}$
$\therefore \quad 180^{\circ}+\angle \mathrm{PRQ}=180^{\circ}$
$\therefore \quad \angle \mathrm{PRQ}=0^{\circ}$
$\therefore \quad$ Lines PR and QR are the same i.e. they are not distinct.
This contradicts the given, that line $A B$ and CD are two distinct lines.
So, our assumption is wrong.
$\therefore \quad$ line $\mathrm{AB}|\mid$ line CD

[Sum of the measures of the angles of a triangle is 180°] [$\mathrm{P}-\mathrm{B}-\mathrm{R}$ and $\mathrm{Q}-\mathrm{D}-\mathrm{R}$] [Given]

Alternate angles test

Theorem: If a pair of alternate angles formed by a transversal of two lines is congruent, then the two lines are parallel.

Given: Line n is the transversal of line l and line m .
$\angle \mathrm{a}$ and $\angle \mathrm{b}$ is a congruent pair of alternate angles.
i.e., $\angle \mathrm{a}=\angle \mathrm{b}$

To prove: line $l \|$ line m
Proof:

$$
\begin{aligned}
& \angle a+\angle c=180^{\circ} \\
& \angle a=\angle b
\end{aligned}
$$

But $\angle \mathrm{b}$ and $\angle \mathrm{c}$ are interior angles on lines l and m when line n is the transversal.
$\therefore \quad$ line $l \|$ line m
(i) [Angles in a linear pair]

(ii) [Given]

$$
\therefore \quad \angle \mathrm{b}+\angle \mathrm{c}=180^{\circ}
$$

[From (i) and (ii)]
[Interior angles test]

Corresponding angles test

Theorem: If a pair of corresponding angles formed by a transversal of two lines is congruent, then the two lines are parallel.

Given: Line n is the transversal of line l and line m.
$\angle \mathrm{a}$ and $\angle \mathrm{b}$ is a congruent pair of corresponding angles.
i.e., $\angle \mathrm{a}=\angle \mathrm{b}$

To prove: line $l \|$ line m
Proof:

$$
\begin{aligned}
& \angle a+\angle c=180^{\circ} \\
& \angle a=\angle b \\
\therefore \quad & \angle \mathrm{~b}+\angle \mathrm{c}=180^{\circ}
\end{aligned}
$$

(i) [Angles in a linear pair]
(ii) [Given]
[From (i) and (ii)]

But $\angle \mathrm{b}$ and $\angle \mathrm{c}$ are interior angles on lines l and m when line n is the transversal.
$\therefore \quad$ line $l \|$ line m
[Interior angles test]

Corollary I: If a line is perpendicular to two lines in a plane, then the two lines are parallel to each other.
Given: \quad Line $\mathrm{n} \perp$ line l, and line $\mathrm{n} \perp$ line m
To prove: line $l \|$ line m
Proof:
line $\mathrm{n} \perp$ line l
$\therefore \quad \angle a=90^{\circ}$
line $\mathrm{n} \perp$ line m
$\therefore \quad \angle c=90^{\circ}$
$\angle \mathrm{a}=\angle \mathrm{c}$
But $\angle \mathrm{a}$ and $\angle \mathrm{c}$ are corresponding angles on lines l and m when line n is the transversal.
$\therefore \quad$ line $l \|$ line m
[Given]
(i)
[Given]
(ii)
[From (i) and (ii)]
[Corresponding angles test]

Corollary II: If two lines in a plane are parallel to a third line in the plane, then those two lines are parallel to each other.
Given: Line l, line m and line n are coplanar lines.
line $l \|$ line m , and line $l \|$ line n
To prove: line $m \|$ line n
Construction: Draw a transversal q intersecting lines l, m and n
Proof:
line $l \|$ line m and line q is their transversal.

$$
\angle a=\angle b
$$

line $l \|$ line n and line q is their transversal.
$\angle a=\angle c$
$\therefore \quad \angle \mathrm{b}=\angle \mathrm{c}$
But $\angle \mathrm{b}$ and $\angle \mathrm{c}$ are corresponding angles on lines m and n when line q is their transversal.
line $m \|$ line n

(ii) [Corresponding angles]
[From (i) and (ii)]
[Corresponding angles test]

Practice Set 2.2

1. In the adjoining figure, $y=108^{\circ}$ and $x=71^{\circ}$.

Are the lines m and n parallel? Justify?

Solution:

$$
\begin{array}{ll}
& \begin{aligned}
& x+y=71^{\circ}+108^{\circ} \\
&=179^{\circ} \\
& \therefore x+y \neq 180^{\circ}
\end{aligned} \\
\therefore & \text { The angles } x \text { and } y \text { are not supplementary. } \\
\therefore & x \text { and } y \text { do not form a pair of interior angles. } \\
\therefore & \\
\text { line } \mathbf{m} \text { and line } \mathbf{n} \text { are not parallel lines. }
\end{array}
$$

2. In the adjoining figure, if $\angle \mathrm{a} \cong \angle \mathrm{b}$ then prove that line $l \|$ line m.

Given: $\angle \mathrm{a} \cong \angle \mathrm{b}$
To prove: line $l \|$ line m
Proof:

$$
\begin{aligned}
& \angle a \cong \angle c \\
& B u t, \angle a \cong \angle b \\
& \therefore \quad \angle \mathrm{~b} \cong \angle \mathrm{c} \\
& \text { But, } \angle \mathrm{b} \text { and } \angle \mathrm{c} \text { are corresponding } \\
& \text { angles on lines } l \text { and } \mathrm{m} \text { when line } \mathrm{n} \text { is } \\
& \text { the transversal. } \\
& \therefore \quad \text { line } l \| \text { line } \mathrm{m}
\end{aligned}
$$

(i) [Vertically opposite angles]
(ii) [Given]
[From (i) and (ii)]

[Corresponding angles test]
3. In the adjoining figure, if $\angle \mathrm{a} \cong \angle \mathrm{b}$ and $\angle x \cong \angle y$, then prove that line $l \|$ line n.

Given: $\quad \angle \mathrm{a} \cong \angle \mathrm{b}$ and $\angle x \cong \angle y$
To prove: line $l \|$ line n

Proof:
$\angle \mathrm{a} \cong \angle \mathrm{b}$
But, $\angle \mathrm{a}$ and $\angle \mathrm{b}$ are corresponding angles on lines l and m when line k is the transversal.
$\therefore \quad$ line $l \mid l$ line m
$\angle x \cong \angle y$
But, $\angle x$ and $\angle y$ are alternate angles on lines m and n when seg PQ is the transversal.
$\therefore \quad$ line $m \|$ line n
$\therefore \quad$ From (i) and (ii),
line $l|\mid$ line n
[Given]
(i) [Corresponding angles test] [Given]
(ii) [Alternate angles test]

[If two lines are parallel to the third line, then they are parallel to each other.]
4. In the adjoining figure, if ray $\mathrm{BA} \|$ ray $\mathrm{DE}, \angle \mathrm{C}=50^{\circ}$ and $\angle D=100^{\circ}$. Find the measure of $\angle A B C$.
(Hint: Draw a line passing through point C and parallel to line AB .) Solution:
line FG || ray BA
Ray BA || ray DE
line FG || ray DE
$\therefore \quad \mathrm{m} \angle \mathrm{DCF}=\mathrm{m} \angle \mathrm{EDC}$
$\therefore \quad \mathrm{m} \angle \mathrm{DCB}+\mathrm{m} \angle \mathrm{BCF}=100^{\circ}$
$\therefore \quad 50^{\circ}+\mathrm{m} \angle \mathrm{BCF}=100^{\circ}$
$\therefore \quad m \angle B C F=50^{\circ}$
(i)
[Construction]
[Given]
[If two lines are parallel to the third line, then they are parallel to each other.]
[Alternate angles]
$[\because \angle \mathrm{DCF}=\angle \mathrm{DCB}+\angle \mathrm{BCF}]$

Now, line FG $\|$ ray BA and seg BC is their transversal.

$$
\begin{aligned}
& \therefore \quad \mathrm{m} \angle \mathrm{ABC}+\mathrm{m} \angle \mathrm{BCF}=180^{\circ} \\
& \therefore \quad \mathrm{m} \angle \mathrm{ABC}+50^{\circ}=180^{\circ} \\
& \therefore \quad \mathbf{m} \angle \mathbf{A B C}=\mathbf{1 3 0}^{\circ}
\end{aligned}
$$

[From (i)]
5. In the adjoining figure, ray $A E \|$ ray $B D$, ray $A F$ is the bisector of $\angle E A B$ and ray $B C$ is the bisector of $\angle A B D$. Prove that line AF || line BC.

Given: \quad Ray $\mathrm{AE} \|$ ray BD , and
ray AF and ray BC are the bisectors of $\angle \mathrm{EAB}$ and $\angle \mathrm{ABD}$ respectively.

To prove: line $\mathrm{AF}|\mid$ line BC

Proof:

Ray $\mathrm{AE} \|$ ray BD and seg AB is their transversal.
$\therefore \quad \angle \mathrm{EAB}=\angle \mathrm{ABD}$
$\therefore \quad \frac{1}{2} \angle \mathrm{EAB}=\frac{1}{2} \angle \mathrm{ABD}$
$\therefore \quad \angle \mathrm{FAB}=\angle \mathrm{ABC}$

But, $\angle \mathrm{FAB}$ and $\angle \mathrm{ABC}$ are alternate angles on lines AF and BC when seg AB is the transversal.
$\therefore \quad$ line AF || line BC
[Alternate angles]
[Multiplying both sides
by $\frac{1}{2}$]
[Rays AF and BC are the bisectors of $\angle \mathrm{EAB}$ and $\angle \mathrm{ABD}$]
[Alternate angles test]
6. A transversal EF of line $A B$ and line $C D$ intersects the lines at point P and Q respectively. Ray $P R$ and ray $Q S$ are parallel and bisectors of $\angle \mathrm{BPQ}$ and $\angle \mathrm{PQC}$ respectively. Prove that line $A B|\mid$ line CD.

Given: \quad Ray PR \| ray QS
Ray PR and ray QS are the bisectors of $\angle \mathrm{BPQ}$ and
$\angle \mathrm{PQC}$ respectively.

To prove: line $A B \|$ line $C D$
Proof:

Ray PR || ray QS and seg PQ is their transversal.
$\therefore \quad \angle \mathrm{SQP}=\angle \mathrm{QPR}$
$\therefore \quad 2(\angle \mathrm{SQP})=2(\angle \mathrm{QPR})$
$\therefore \quad \angle \mathrm{PQC}=\angle \mathrm{QPB}$

But, $\angle \mathrm{PQC}$ and $\angle \mathrm{QPB}$ are alternate angles on lines AB and CD when line PQ is the transversal.
$\therefore \quad$ line $A B \|$ line $C D$
[Alternate angles]
[Multiplying both sides by 2]
[Rays PR and QS are bisectors
of $\angle \mathrm{BPQ}$ and $\angle \mathrm{PQC}$]
[Alternate angles test]

Problem Set - 2

1. Select the correct alternative and fill in the blanks in the following statements.
i. If a transversal intersects two parallel lines then the sum of interior angles on the same side of the transversal is \qquad .
(A) 0°
(B) 90°
(C) 180°
(D) 360°
ii. The number of angles formed by a transversal of two lines is \qquad .
(A) 2
(B) 4
(C) 8
(D) 16
iii. A transversal intersects two parallel lines. If the measure of one of the angles is 40°, then the measure of its corresponding angle is \qquad
(A) 40°
(B) 140°
(C) 50°
(D) 180°
iv. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=76^{\circ}, \angle \mathrm{B}=48^{\circ}$, then $\angle \mathrm{C}=$ \qquad .
(A) 66°
(B) 56°
(C) 124°
(D) 28°
v. Two parallel lines are intersected by a transversal. If measure of one of the alternate interior angles is 75° then the measure of the other angle is \qquad .
(A) 105°
(B) 15°
(C) 75°
(D) 45°

Answers:

i. (C)
ii. (C)
iii. (A)
iv. (B)
v. (C)

Hints:
iv. In $\triangle \mathrm{ABC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\therefore \quad \angle \mathrm{C}=180^{\circ}-76^{\circ}-48^{\circ}=56^{\circ}$
2. Ray PQ and ray PR are perpendicular to each other. Points B and A are in the interior and exterior of $\angle Q P R$ respectively. Ray $P B$ and ray $P A$ are perpendicular to each other.
Draw a figure showing all these rays and write -
i. A pair of complementary angles
ii. A pair of supplementary angles
iii. A pair of congruent angles.

Solution:

Complementary angles:
$\angle \mathrm{RPQ}=90^{\circ}$
$\angle \mathrm{RPB}+\angle \mathrm{BPQ}=90^{\circ}$
$\angle \mathrm{APB}=90^{\circ}$
$\angle \mathrm{APR}+\angle \mathrm{RPB}=90^{\circ}$
[ray PQ \perp ray PR]
[Angle addition property]
$[$ ray $\mathrm{PA} \perp$ ray PB$]$
$\therefore \quad$ Pairs of complementary angles:
a. $\quad \angle \mathrm{RPB}$ and $\angle \mathrm{BPQ}$
b. $\angle A P R$ and $\angle R P B$
ii. Supplementary angles:
$\angle \mathrm{APB}+\angle \mathrm{RPQ}=90^{\circ}+90^{\circ}=180^{\circ}$
$\therefore \quad \angle A P B$ and $\angle R P Q$ are a pair of supplementary angles.
iii. Congruent angles:

$$
\begin{array}{ll}
\text { a. } & \angle \mathrm{APB} \cong \angle \mathrm{RPQ} \\
\text { b. } & \angle \mathrm{APB}=\angle \mathrm{RPQ} \\
\therefore & \angle \mathrm{APR}+\angle \mathrm{RPB}=\angle \mathrm{RPB}+\angle \mathrm{BPQ} \\
\therefore & \angle \mathrm{APR}=\angle \mathrm{BPQ} \\
\therefore & \angle \mathrm{APR} \cong \angle \mathrm{BPQ}
\end{array}
$$

[Each is of 90°]
[Angle addition property]
3. Prove that, if a line is perpendicular to one of the two parallel lines, then it is perpendicular to the other line also.

Given: \quad line $\mathrm{AB} \|$ line CD and line EF intersects them at P and Q respectively. line $\mathrm{EF} \perp$ line AB

To prove: line EF \perp line CD
Proof:
line $\mathrm{AB}|\mid$ line CD and line EF is their transversal.
$\therefore \quad \angle E P B \cong \angle P Q D$
line $\mathrm{EF} \perp$ line AB
$\therefore \quad \angle E P B=90^{\circ}$
(ii)
(i) [Corresponding angles]
[Given]

$\therefore \quad \angle \mathrm{PQD}=90^{\circ}$
[From (i) and (ii)]
$\therefore \quad$ line $E F \perp$ line $C D$
4. In the adjoining figure, measures of some angles are shown. Using the measures find the measures of $\angle x$ and $\angle y$ and hence show that line $l \|$ line m.
Proof:

$$
\begin{aligned}
& \angle x=130^{\circ} \\
& \angle y=50^{\circ}
\end{aligned}
$$

Here, $\mathrm{m} \angle \mathrm{PQT}+\mathrm{m} \angle \mathrm{QTS}=130^{\circ}+50^{\circ}$ $=180^{\circ}$
But, $\angle \mathrm{PQT}$ and $\angle \mathrm{QTS}$ are a pair of interior angles on lines l and m when line n is the transversal.
$\therefore \quad$ line $l \|$ line m
[Vertically opposite angles]

5. In the adjoining figure, Line $A B \|$ line $C D \|$ line $E F$ and line $Q P$ is their transversal. If $y: z=3: 7$ then find the measure of $\angle x$.
Solution:

$$
\begin{array}{ll}
& \angle \mathrm{DHI}=\angle \mathrm{GHC} \\
\therefore \quad \angle \mathrm{DHI}=y \\
& \frac{y}{\mathrm{z}}=\frac{3}{7} \\
\therefore \quad & y=\frac{3}{7} z \tag{i}
\end{array}
$$

Now, line CD || line EF and line QP is their transversal.
$\therefore \quad \angle \mathrm{DHI}+\angle \mathrm{HIF}=180^{\circ}$
$\therefore \quad y+\mathrm{z}=180^{\circ}$
[Vertically opposite angles]
[Given]
[Interior angles]

$$
\begin{array}{ll}
\therefore & \frac{3}{7} z+z=180^{\circ} \\
\therefore & 3 z+7 z=180^{\circ} \times 7 \\
\therefore & 10 z=1260^{\circ} \\
\therefore & z=126^{\circ}
\end{array}
$$

Line AB || line EF and line QP is their transversal.
$\therefore \quad \angle x=\angle \mathrm{z}$
$\therefore \quad \angle x=126^{\circ}$
[From (i)]
[Multiplying both sides by 7]
[Alternate angles]
[From (ii)]

6. In the adjoining figure, if line $q \|$ line r, line p is their transversal and if $a=80^{\circ}$, find the values of f and g.

Solution:

$$
\begin{array}{rlrl}
\text { i. } & \angle \mathrm{a} & =80^{\circ} \\
& & \angle \mathrm{c} & =\angle \mathrm{a} \\
\therefore & \angle c & =80^{\circ}
\end{array}
$$

Now, line $\mathrm{q}|\mid$ line r and line p is their transversal.
$\therefore \quad \angle \mathrm{g}=\angle \mathrm{c}$
$\therefore \quad \angle \mathrm{g}=\mathbf{8 0}{ }^{\circ}$
ii. Also, $\angle \mathrm{f}+\angle \mathrm{c}=180^{\circ}$
$\therefore \quad \angle \mathrm{f}+80^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{f}=100^{\circ}$
[Given]
[Vertically opposite angles]
(i)

[Corresponding angles]
[From (i)]
[Interior angles]
[From (i)]
7. In the adjoining figure, if line $\mathbf{A B}|\mid$ line $\mathbf{C F}$ and line $\mathbf{B C}| \mid$ line ED then prove that $\angle \mathrm{ABC}=\angle \mathrm{FDE}$.
Given: \quad line $A B \|$ line $C F$ and line $B C \|$ line $E D$
To prove: $\angle \mathrm{ABC}=\angle \mathrm{FDE}$
Proof:
line $\mathrm{AB}|\mid$ line PF and line BC is their transversal.
$\therefore \quad \angle A B C=\angle P C Q$
$\angle P C Q=\angle B C D$
line $\mathrm{BC} \|$ line ED and line CD is their transversal.
$\angle B C D=\angle F D E$
$\angle \mathrm{ABC}=\angle \mathrm{FDE}$

8. In the adjoining figure, line PS is a transversal of parallel line $A B$ and line CD. If Ray $Q X$, ray $Q Y$, ray $R X$, ray $R Y$ are angle bisectors, then prove that \square QXRY is a rectangle.
Given: line $\mathrm{AB} \|$ line CD
Rays $\mathrm{QX}, \mathrm{RX}, \mathrm{QY}, \mathrm{RY}$ are the bisectors of $\angle \mathrm{AQR}, \angle \mathrm{QRC}$,
$\angle \mathrm{BQR}$ and $\angle \mathrm{QRD}$ respectively.
To prove: $\square Q X R Y$ is a rectangle.

Proof:

$$
\begin{array}{ll}
& \begin{array}{l}
\text { Line } \mathrm{AB} \| \text { line } \mathrm{CD} \text { and line } \mathrm{PS} \text { is their } \\
\text { transversal. }
\end{array} \\
\therefore \quad & \angle \mathrm{AQR}+\angle \mathrm{QRC}=180^{\circ} \\
\therefore \quad & \frac{1}{2} \angle \mathrm{AQR}+\frac{1}{2} \angle \mathrm{QRC}=\frac{1}{2} \times 180^{\circ} \\
\therefore \quad & \angle X Q R+\angle X R Q=90^{\circ} \\
& \text { Now, in } \triangle \mathrm{XQR}, \\
& \angle \mathrm{XQR}+\angle \mathrm{XRQ}+\angle \mathrm{QXR}=180^{\circ} \\
\therefore \quad & 90^{\circ}+\angle \mathrm{QXR}=180^{\circ} \\
\therefore \quad & \angle Q X R=90^{\circ} \\
\therefore & \mathrm{Also}, \angle \mathrm{AQR}+\angle \mathrm{BQR}=180^{\circ} \\
\therefore \quad & \frac{1}{2} \angle \mathrm{AQR}+\frac{1}{2} \angle \mathrm{BQR}=\frac{1}{2} \times 180^{\circ} \\
\therefore \quad & \angle \mathrm{XQR}+\angle \mathrm{YQR}=90^{\circ} \\
\therefore \quad & \angle X Q Y=90^{\circ}
\end{array}
$$

Similarly we can prove that,
$\therefore \quad \square \mathbf{Q X R Y}$ is a rectangle.

$$
\angle Q Y R=\angle X R Y=90^{\circ}
$$

Multiple Choice Questions

1. In the adjacent figure, which of the following is a pair of alternate exterior angles?
(A) $\angle \mathrm{a}, \angle \mathrm{f}$
(B) $\angle \mathrm{e}, \angle \mathrm{j}$
(C) $\angle \mathrm{d}, \angle \mathrm{e}$
(D) $\angle \mathrm{f}, \angle \mathrm{k}$
2. In the adjacent figure which of the following is not a pair of corresponding angles?
(A) $\angle \mathrm{c}, \angle \mathrm{e}$
(B) $\angle \mathrm{q}, \angle \mathrm{h}$
(C) $\angle \mathrm{c}, \angle \mathrm{k}$
(D) $\angle \mathrm{d}, \angle \mathrm{h}$

3. In the adjacent figure, if line $l \|$ line $\mathrm{m} \|$ line n , then which of the following options is correct?
(A) $\angle \mathrm{d}+\angle \mathrm{e}=180^{\circ}$
(B) $\angle \mathrm{h}+\angle \mathrm{j}=180^{\circ}$
(C) $\angle \mathrm{g}+\angle \mathrm{f}=180^{\circ}$
(D) $\angle \mathrm{i}+\angle \mathrm{h}=180^{\circ}$
4. If the interior angles formed by a transversal of two distinct line are \qquad , then the two lines are parallel.
(A) congruent
(B) complementary
(C) supplementary
(D) none of these.
5. If $\angle \mathrm{a}$ and $\angle \mathrm{b}$ are angles in a linear pair, and $\angle \mathrm{a}$ and $\angle \mathrm{d}$ are corresponding angles, then $\angle \mathrm{b}+\angle \mathrm{d}=$
(A) $2 \angle b$
(B) 90°
(C) 180°
(D) $<180^{\circ}$
6. The sum of the measures of any two alternate angles is equal to \qquad times the measure of any of the those angles.
(A) one
(B) two
(C) three
(D) half
7. In a right angled triangle ABC , if $\angle \mathrm{B}=90^{\circ}$, then $\angle \mathrm{A}+\angle \mathrm{C}=$
(A) 45°
(B) 90°
(C) 180°
(D) none of these
8. If in a pair of interior angles on the same side of transversal, the measure of one angle is less than 90°, then the measure of the other angle will be
(A) equal to 90°
(B) greater than 90° but less than 180°
(C) less than 90°
(D) greater than 180°
9. If the ratio of the measures of the interior angles on the same side of the transversal is $5: 4$, then the measure of the smaller angle is
(A) 40°
(B) 50°
(C) 80°
(D) 100°
10. In the adjacent figure, if $\angle \mathrm{ABE}: \angle \mathrm{BED}=3: 7$, then, $\angle \mathrm{CBE}: \angle \mathrm{BEF}=$
(A) $3: 7$
(B) $3: 10$
(C) $7: 3$
(D) $10: 3$

Additional Problems for Practice

Based on Practice Set 2.1

1. In the figure below, if line $\mathrm{AB} \|$ line CD , then find the values of x and y.

2. In the figure below, $\mathrm{AB} \| \mathrm{CD}$, then find the values of x, y and z .

3. In the figure below, if $\mathrm{AB} \| \mathrm{CD}$, then find the measures of $\angle \mathrm{PCD}$ and $\angle \mathrm{CPD}$.

4.

In the figure below, if line $\mathrm{AB} \|$ line CD , then find the value of x.

5. In the figure below, $\mathrm{AB} \| \mathrm{CD}$, then find the value of x.

6. In the figure below, line $\mathrm{AB} \|$ line CD , then find the values of x, y and z .

Based on Practice Set 2.2

1. Prove that the bisector of a pair of interior angles formed on the same side of the transversal are perpendicular to each other.
2. In the figure below, $\mathrm{m} \angle \mathrm{ABC}=65^{\circ}, \mathrm{m} \angle \mathrm{DCE}=35^{\circ}, \mathrm{m} \angle \mathrm{CEF}=145^{\circ}, \mathrm{m} \angle \mathrm{BCE}=30^{\circ}$, then prove that ray AB || ray EF.

3. In the adjacent figure, line $\mathrm{AB} \|$ line ED and line $\mathrm{EF} \|$ line DC , then prove that $\angle \mathrm{ABC}$ and $\angle \mathrm{DEF}$ are supplementary.

Apply your knowledge

1. To verify the properties of angles formed by a transversal of two parallel lines. (Textbook pg. no. 14)

Take a piece of thick coloured paper. Draw a pair of parallel lines and a transversal on it. Paste straight sticks on the lines. Eight angles will be formed. Cut pieces of coloured paper, as shown in the figure, which will just fit at the corners of $\angle 1$ and $\angle 2$. Place the pieces near different pairs of corresponding angles, alternate angles and interior angles and verify their properties.

[Students should attempt the above activity on their own.]

1. Choose the correct alternative for each of the following questions.
i. If two lines intersect each other, then
(A) the pair of alternate angles are congruent.
(B) the pair of vertically opposite angles are congruent.
(C) the pair of corresponding angles are congruent.
(D) the pair of interior angles are supplementary.
ii. If a transversal intersects two parallel lines, then which of the following is not true?
(A) A pair of corresponding angles is congruent.
(B) A pair of interior angles is complementary.
(C) A pair of alternate angles is congruent.
(D) A pair of interior angles is supplementary.
iii. In the figure given below if line $l \|$ line m, and line n is their transversal, then which of the following statements is incorrect?

(A) $\mathrm{a}+\mathrm{b}=180^{\circ}$
(B) $\mathrm{d}+\mathrm{f}=180^{\circ}$
(C) $\mathrm{e}+\mathrm{g}=180^{\circ}$
(D) $\mathrm{c}+\mathrm{f}=180^{\circ}$
iv. Find the measure of the alternate angle of the angle which is in linear pair with the angle of measure of 65°.
(A) 65°
(B) 25°
(C) 115°
(D) 130°
v. Which of the following pairs is a pair of interior angles formed by two parallel lines and on the same side of the transversal?
(A) $30^{\circ}, 60^{\circ}$
(B) $30^{\circ}, 150^{\circ}$
(C) $60^{\circ}, 130^{\circ}$
(D) $50^{\circ}, 120^{\circ}$
2. Attempt the following.
i. In the figure below, if $\angle x=84^{\circ}$ and $\angle y=83^{\circ}$, then state whether the statement 'line $\mathrm{m} \|$ line n ' is true or false. Justify.

ii. Prove that if a line is perpendicular to two coplanar lines, then those two lines are parallel to each other.
iii. In the adjoining figure, write down the pairs of alternate exterior angles.

3. Attempt the following.
i. In the adjoining figure, if $\angle x \cong \angle y$ and $x+\mathrm{z}=180^{\circ}$, then prove that line $\mathrm{m} \|$ line n .

ii. If a transversal intersects two parallel lines, then show that the bisectors of any pair of alternate angles are also parallel.
iii. Prove that the sum of the measures of all the angles of a triangle is 180°.
4. Attempt any of the following.
i. In the figure given below, line $l \|$ line m . Find the measures of $\angle \mathrm{a}, \angle \mathrm{b}, \angle \mathrm{c}, \angle \mathrm{d}$ and $\angle \mathrm{f}$ using the measures given.

ii. Prove that if a transversal intersects two parallel lines then the quadrilateral formed by the angle bisectors of the interior angles on both sides of the transversal is a rectangle.

Answers

Multiple Choice Questions

1. (D)
2. (A) 3. (B)
3. (C)
4. (C)
5. (B)
6. (B)
7. (B)
8. (C)
9. (C)

Additional Problems for Practice

Based on Practice Set 2.1

1. $x=85^{\circ}, y=65^{\circ}$
2. $x=35^{\circ}, y=70^{\circ}, \mathrm{z}=75^{\circ}$
3. $\angle \mathrm{PCD}=44^{\circ}, \angle \mathrm{CPD}=80^{\circ}$
4. $x=40^{\circ}$
5. $x=80^{\circ}$
6. $x=65^{\circ}, y=115^{\circ}, \mathrm{z}=45^{\circ}$

Practice Test

1.	i.	B	ii.	B	iii.	D	iv.	C
2.	i.	False	iii.	$\angle \mathrm{a}$ and $\angle \mathrm{h} ; \angle \mathrm{b}$ and $\angle \mathrm{g}$	v.	B		
4.	i.	$\angle \mathrm{a}=136^{\circ}, \angle \mathrm{b}=136^{\circ}, \angle \mathrm{c}=44^{\circ}, \angle \mathrm{d}=85^{\circ}, \angle \mathrm{f}=95^{\circ}$						

Std.IX

AVAILABLE SUBJECTS:

- English Kumarbharati
- हिंदी लोकभाइती
- हिंदी लोकवाणी
- मराठी अक्षरभारती
- आमीदः (सम्पूर्ण संस्कृतमू)
- आनन्दः (संयुक्त संस्कृतमू)
- Mathematics - I
- Mathematics - II
- Science and Technology
- History and Political Science
- Geography

BUY NOW

SALIENT FEATURES:

- Extensive coverage of textual and conceptual content
- Ample practice questions to facilitate revision
- Assessments at the end of chapters for self-evaluation
- Solutions to all project based questions given in the textbook
- Exhaustive coverage of grammar and writing skills in Languages
- Exhaustive coverage of concepts in Social Sciences, Maths \& Science

