SAMPLE CONTENT

Perfect Notes NATHEMATICS Part - L

Written as per the latest syllabus prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune.

Mathematics Part STD.IX

Salient Features

- Written as per the new textbook.
- Exhaustive coverage of entire syllabus.
- Topic-wise distribution of textual questions and practice problems at the beginning of every chapter.
- Covers solutions to all practice sets and problem sets.
- Includes additional problems for practice.
- MCQs for preparation of competitive examinations.
- Includes practice test for each chapter.

Printed at: India Printing Works, Mumbai

© Target Publications Pvt. Ltd. No part of this book may be reproduced or transmitted in any form or by any means, C.D. ROM/Audio Video Cassettes or electronic, mechanical including photocopying; recording or by any information storage and retrieval system without permission in writing from the Publisher.

TEID: 12561 JUP

P.O. No. 124872

PREFACE

Preparing this '**Mathematics Part - I'** book was a rollercoaster ride. We had a plethora of ideas, suggestions and decisions to ponder over. However, our basic premise was to keep this book in line with the new, improved syllabus and to provide students with an absolutely fresh material.

Mathematics Part - I covers several topics in the areas of numbers, algebra, commercial mathematics and data handling. The study of these topics requires a deep and intrinsic understanding of concepts, terms and formulae. Hence, to ease this task, we present 'Std. IX: Mathematics Part - I' – a complete and thorough guide, extensively drafted to boost the confidence of students.

For better understanding of different types of questions, topic-wise distribution of textual questions and practice problems has been provided at the beginning of every chapter. Before each practice set, short and easy explanation of different concepts with illustrations for better understanding is given. Solutions to textual questions and examples are provided in a lucid manner.

'Multiple Choice Questions' based on each chapter facilitate students to prepare for competitive examinations.

'Additional problems for practice' includes additional unsolved problems for practice to help the students sharpen their problem solving skills. 'Solve examples' from textbook are included in this section.

'Apply your knowledge' covers all the textual activities and projects along with their answers.

Every chapter ends with a 'Practice Test'. This test stands as a testimony to the fact that the child has understood the chapter thoroughly.

The journey to create a complete book is strewn with triumphs, failures and near misses. If you think we've nearly missed something or want to applaud us for our triumphs, we'd love to hear from you.

Please write to us on: mail@targetpublications.org

A book affects eternity; one can never tell where its influence stops,

Best of luck to all the aspirants!

From, Publisher

Edition: First

Disclaimer

This reference book is transformative work based on textual contents published by Bureau of Textbook. We the publishers are making this reference book which constitutes as fair use of textual contents which are transformed by adding and elaborating, with a view to simplify the same to enable the students to understand, memorize and reproduce the same in examinations.

This work is purely inspired upon the course work as prescribed by the Maharashtra State Bureau of Textbook Production and Curriculum Research, Pune. Every care has been taken in the publication of this reference book by the Authors while creating the contents. The Authors and the Publishers shall not be responsible for any loss or damages caused to any person on account of errors or omissions which might have crept in or disagreement of any third party on the point of view expressed in the reference book.

© reserved with the Publisher for all the contents created by our Authors.

No copyright is claimed in the textual contents which are presented as part of fair dealing with a view to provide best supplementary study material for the benefit of students.

Contents

	No.	Topic Name	Page No.
1 Sets		Sets	1
	2	Real Numbers	20
3 Polynomials		Polynomials	42
	4 Ratio and Proportion		64
5 Linear Equations in Two Variabl		Linear Equations in Two Variables	93
	6 Financial Planning		110
	7	Statistics	124

Solved examples from textbook are indicated by "+".

2 Real Numbers

T CD11	D		
Type of Problems	Practice Set	Q. Nos.	
	2.1	Q.1, 2	
Decimal form of rational numbers	Practice Problems	Q.1	
	(Based on Practice Set 2.1)		
	Problem Set-2	Q.3	
n	2.1	Q.3	
To express the recurring decimal in $\frac{p}{q}$	Practice Problems	Q.2, 3	
form	(Based on Practice Set 2.1)	¥1,5	
Iom	Problem Set-2	Q.2	
	2.2	Q.1, 2, 3, 4	
Irrational and real numbers	Practice Problems	012	
Inational and real numbers	(Based on Practice Set 2.2)	Q.1, 2	
	Problem Set-2	Q.4	
	2.3	Q.1, 2	
Surds, order of surds	Practice Problems		
	(Based on Practice Set 2.3)	Q.1	
	2.3	Q.4	
Simplest form of a surd, rationalizing	Practice Problems		
factor	(Based on Practice Set 2.3)	Q.5, 8	
	Problem Set-2	Q. 5, 6	
Like surds, unlike surds	2.3	Q.3	
	2.3	Q. 6, 7, 8	
	Practice Problems		
Operations on surds	(Based on Practice Set 2.3)	Q.3, 6, 7	
	2.4	Q.1	
	Problem Set-2	Q.7	
	2.3	Q.5	
Comparison of surds	Practice Problems		
	(Based on Practice Set 2.3)	Q.2	
	2.3	Q.9	
	Practice Problems		
	(Based on Practice Set 2.3)	Q.4	
Rationalizing the denominator	2.4	Q.2	
	Practice Problems	Q.1	
	(Based on Practice Set 2.4)	x	
	Problem Set-2	Q.8	
	2.5	Q.1, 2	
Absolute value	Practice Problems	<u>X.1, 2</u>	
Absolute value		Q.1, 2	
	(Based on Practice Set 2.5)	<u> </u>	

Let's Recall

- 1. Set of numbers:
- N = Set of Natural numbersi. $= \{1, 2, 3, 4, \ldots\}$
- W = Set of Whole numbers ii. $= \{0, 1, 2, 3, 4, \ldots\}$
- I = Set of Integers iii. $= \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
- Q = Set of Rational numbersiv.

$$= \left\{ \frac{p}{q} \, | \, \mathbf{p}, \, \mathbf{q}, \in \mathbf{I}, \, \mathbf{q} \neq \mathbf{0} \right\}$$

R = Set of Real numbersV. $N \subseteq W \subseteq I \subseteq Q \subseteq R$

2. Order relation on rational numbers:

- $\frac{p}{r}$ and $\frac{1}{r}$ are any two rational numbers, with q > 0, s > 0, then
- If ps = qr, then $\frac{p}{q} = \frac{r}{s}$ i. **Example:** $\frac{3}{5} = \frac{6}{10}$, because $3 \times 10 = 5 \times 6$
- If ps > qr, then $\frac{p}{q} > \frac{r}{s}$ ii. Example: $\frac{3}{4} > \frac{2}{5}$, because $3 \times 5 > 2 \times 4$
- iii.
- If ps < qr, then $\frac{p}{q} < \frac{r}{s}$ **Example:** $\frac{1}{5} < \frac{2}{3}$, because $1 \times 3 < 2 \times 5$

Let's Study

Properties of rational numbers

If a, b, c are rational numbers, then

	Property	Addition	Multiplication
1.	Commutative	a+b=b+a	$a \times b = b \times a$
2.	Associative	(a+b)+c	$a \times (b \times c)$
4.		=a+(b+c)	$=(a \times b) \times c$
3.	Identity	$\mathbf{a} + 0 = 0 + \mathbf{a} = \mathbf{a}$	$a \times 1 = 1 \times a = a$
4.	Inverse	$\mathbf{a} + (-\mathbf{a}) = 0$	$\mathbf{a} \times \frac{1}{\mathbf{a}} = 1 \ (\mathbf{a} \neq 0)$

Let's Recall

Decimal form of Rational numbers:

The decimal form of any rational number is

- i. Terminating type or
- Non-terminating recurring type ii.

Examples:

Remember This

If the prime factors of 'q' are any combination of 2 or 5 or both 2 and 5, then the decimal

form of the fraction $\frac{p}{q}$ is of terminating type.

If the prime factors are other than 2 or 5, then its decimal expansion is non-terminating and recurring.

Let's Study

Count the number of recurring digits after decimal point in the given rational number, and multiply it by 10, 100, 1000 accordingly.

Examples:

- In 4.5 digit 5 is the only recurring digit. i. Hence, to convert 4.5 in $\frac{p}{q}$ form multiply it by 10.
- Write 0.5 in $\frac{p}{q}$ form. ii.

Solution:

Let
$$x = 0.5$$
 ...(i)

Multiplying both sides by 10,

$$10x = 5.5$$
 ...(ii)
Subtracting (i) from (ii),
 $10x - x = 5.5 - 0.5$

$y = 5$ $x = -\frac{5}{9}$ $x = -\frac{5}{9}$ $y = 1 \text{ Tor I is}$ 1. How to convert 2.43 in $\frac{P}{9}$ form? (Texbook pg. no. 20) Solution: $f = t x = 2.43$ Since the denominator is not of the form $2^{11} \times 5^{11}$, the decimal form of the rational number will be non-terminating type. $y = -\frac{240.9}{99}$ $y = -240.9$ $y = -260.9$ $y = -260.5$	Std. IX: Maths (Part - I)	
(v) Try This 1. How to convert 2.43 in $\frac{P}{9}$ form ? (Textbook gp no.20) Solution: Let $x = 2.43$ (Textbook gp no.20) Multiplying both sides by 100, 100x - x = 243.33 (Let $x = 0.43$) $2 + x^2 = 240.9$ $2 + x^2 = 24.22$ $2 + x^2 = 24.22$ 2 +	$\therefore \qquad x = \frac{5}{9}$	Since the denominator is of the form $2^m \times 5^n$, the decimal form of the rational number will be terminating type .
Solution: Let $x = 2.4\hat{3}$ (i) Multiplying both sides by 100, 100 $x = 243.3\hat{3}$ (ii) Subtracting (i) from (ii), 100 $x - x = 243.3\hat{3} = 2.4\hat{3}$ (ii) Subtracting (i) from (iii), 100 $x - x = 243.3\hat{3} = 2.4\hat{3}$ (ii) $\frac{12}{200}$ ii. $\frac{23}{99}$ iii. $\frac{23}{7}$ iv. $\frac{4}{5}$ $\frac{243}{99}$ $\frac{243}{99}$ Hence, to convert 2.4 $\hat{3}$ in $\frac{p}{4}$ form, we will have to multiply it by 100 and not 10. (v) Practice Set 2.1 1. Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type. i. $\frac{13}{5}$ ii. $\frac{21}{17}$ w. $\frac{11}{6}$ Solution: i. $\frac{23}{7} = 3.285714285714$ $\frac{223}{7} = 3.285714285714$ $\frac{223}{7} = 3.285714285714$ $\frac{23}{7} = 3.285714285714$ $\frac{23}{7} = 3.285714285714$ $\frac{23}{7} = 3.285714285714$ $\frac{23}{7} = 3.285714285714$ $\frac{23}{7} = 3.285714285714$ $\frac{24}{5} = 0.8$ $\frac{24}{5} = 0.8$ $\frac{2}{10} = 0.8$ $\frac{2}{10} = 0.8$ $\frac{2}{10} = 2.125$ $\frac{17}{8} = 2.125$ 3. Write the following decimal numbers in $\frac{p}{4}$ form. $\frac{p}{4}$ form.	1. How to convert 2.43 in $\frac{p}{q}$ form ?	Since the denominator is not of the form $2^m \times 5^n$, the decimal form of the rational number will be non-terminating
$2^{m} \times 5^{n}$, the decimal form of the rational number will be terminating type . Multiplying both sides by 10,	(Textbook pg. no. 20) Solution: Let $x = 2.43$ (i) Multiplying both sides by 100, 100x = 243.33(ii) Subtracting (i) from (ii), 100x - x = 243.33 - 2.43 $\therefore 99x = 240.9$ $\therefore x = \frac{240.9}{99}$ Hence, to convert 2.43 in $\frac{P}{q}$ form, we will have to multiply it by 100 and not 10. V Practice Set 2.1 1. Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type. i. $\frac{13}{5}$ ii. $\frac{2}{11}$ iii. $\frac{29}{16}$ iv. $\frac{17}{125}$ v. $\frac{11}{6}$ Solution: i. $5 = 1 \times 5 = 2^{0} \times 5^{1}$ Since the denominator is of the form $2^{m} \times 5^{n}$, the decimal form of the rational number will be terminating type. ii. $11 = 1 \times 11$ Since the denominator is not of the form $2^{m} \times 5^{n}$, the decimal form of the rational number will be non-terminating recurring type. iii. $16 = 2 \times 2 \times 2 \times 2 \times 1 = 2^{4} \times 5^{0}$ Since the denominator is of the form	recurring type. 2. Write the following rational numbers in decimal form. i. $\frac{127}{200}$ ii. $\frac{25}{99}$ iii. $\frac{23}{7}$ iv. $\frac{4}{5}$ v. $\frac{17}{8}$ Solution: i. $\frac{127}{200} = \frac{127}{2 \times 100} = \frac{63.5}{100} = 0.635$ $\therefore \frac{127}{200} = 0.635$ ii. $\frac{25}{99} = 0.2525$ $\therefore \frac{25}{99} = 0.2525$ iii. $\frac{23}{7} = 3.285714285714$ $\therefore \frac{23}{7} = 3.285714285714$ iv. $\frac{4}{5} = \frac{4 \times 2}{5 \times 2} = \frac{8}{10} = 0.8$ $\therefore \frac{4}{5} = 0.8$ v. $\frac{17}{8} = \frac{17 \times 1.25}{8 \times 1.25} = \frac{21.25}{10} = 2.125$ $\therefore \frac{17}{8} = 2.125$ 3. Write the following decimal numbers in $\frac{P}{q}$ form. i. 0.6 ii. $0.\overline{37}$ iii. $3.\overline{17}$ iv. $15.\overline{89}$ v. $2.\overline{514}$
7.7	$2^{m} \times 5^{n}$, the decimal form of the rational	(1)

10x = 6.6...(ii) Subtracting (i) from (ii), 10x - x = 6.6 - 0.69x = 6Ŀ. $x = \frac{6}{9} = \frac{3 \times 2}{3 \times 3}$ Ŀ. $x = \frac{2}{2}$ *.*.. $0.6 = \frac{2}{3}$:. Let $x = 0.\overline{37}$ ii. ...(i) Multiplying both sides by 100, $100x = 37.\overline{37}$...(ii) Subtracting (i) from (ii), $100x - x = 37.\overline{37} - 0.\overline{37}$ 99x = 37÷. $x = \frac{37}{99}$ ÷. $0.\overline{37} = \frac{37}{99}$... Let $x = 3.\overline{17}$ iii. ...(i) Multiplying both sides by 100, $100x = 317.\overline{17}$ (ii) Subtracting (i) from (ii), $100x - x = 317.\overline{17} - 3.\overline{17}$ 99x = 314÷. $x = \frac{314}{99}$ Ŀ. $3.\overline{17} = \frac{314}{99}$... Let $x = 15.\overline{89}$ iv. ...(i) Multiplying both sides by 100, $100x = 1589.\overline{89}$...(ii) Subtracting (i) from (ii), 100x - x = 1589, $\overline{89} - 15$, $\overline{89}$ 99x = 1574 $x = \frac{1574}{99}$ Ŀ. $15.\overline{89} = \frac{1574}{99}$...

Chapter 2: Real Numbers Let x = 2.514v. ...(i) Multiplying both sides by 1000, $1000x = 2514.\overline{514}$...(ii) Subtracting (i) from (ii), $1000x - x = 2514.\overline{514} - 2.\overline{514}$ 999x = 2512*.*.. $x = \frac{2512}{2}$ *.*.. $2.\overline{514} = \frac{2512}{999}$:. Let's Recall To represent irrational numbers on a number line: **Example:** Represent $\sqrt{2}$ on the numberline. Solution: In ∆OAB, $m \angle OAB = 90^{\circ}$ By Pythagoras theorem, $(OB)^2 = (OA)^2 + (AB)^2$ $(OB)^2 = (1)^2 + (1)^2$ $(OB)^2 = 2$ $OB = \sqrt{2}$ units ...[Taking square root of both sides] **Steps of construction:** Draw a number line and take point A at 1. i. ii. Draw AB perpendicular to the number line such that AB = 1 unit. iii. With O as centre and radius equal to OB, draw an arc to intersect the number line at C. 2 $\sqrt{2}$ Let's Study Irrational and real numbers 1. **Irrational Number:** The number which is not rational is called irrational number. The set of irrational numbers is denoted by Q. **Example:** $\sqrt{3}$, $\sqrt{5}$, $2+\sqrt{8}$, π , $-\sqrt{3}$, $-\sqrt{5}$ etc. are irrational numbers.

2. Decimal form of irrational numbers: The decimal form of an irrational number is of non-recurring and non-terminating type.

Std.	. IX: Maths (Part - I)	
	Examples: i. $\sqrt{2} = 1.41421356$	Properties of order relation on Real numbers
	ii. $\sqrt{3} = 1.73205080$	1. For any two real numbers a and b, only one of
	iii. $\sqrt{5} = 2.23606797$	the following relations holds good
3.	To show that $\sqrt{2}$ is not a rational number:	i. a = b
	Let us assume that $\sqrt{2}$ is a rational number.	ii. a < b
		iii. $a > b$
	Then, $\sqrt{2} = \frac{a}{b}$, where 'a' and 'b' have no	2. If $a < b$ and $b < c$, then $a < c$
	common factor other than 1 and $b \neq 0$.	3. If $a < b$, then $a + c < b + c$
	$\sqrt{2} = \frac{a}{b}$, where 'a' and 'b' are co-prime	4. Let $a < b$,
	numbers.	i. If $c > 0$, then $ac < bc$
:. :.	$b\sqrt{2} = a$ $2b^2 = a^2$ (i) [Squaring both sides]	ii. If $c < 0$, then $ac > bc$
	$b^2 = \frac{a^2}{2}$	Examples: a. $2 < 5$, and $3 > 0$
••	$0 - \frac{1}{2}$	$\therefore 2 \times 3 < 5 \times 3$
	Since, 2 divides 'a ² ', so 2 divides 'a' as well.	b. $2 < 5$, and $-3 < 0$ $\therefore 2 \times (-3) > 5 \times (-3)$
.:.	So, we write $a = 2c$, where c is an integer. $a^2 = (2c)^2$ [Squaring both sides]	
	$2b^2 = 4c^2$ [From (i)]	Square root of Negative number
÷	$b^2 = 2c^2$	1. The square root of a negative real number is
.:	$c^2 = \frac{b^2}{2}$	not a real number.
	Since, 2 divides ' b^{2} ', so 2 divides 'b'.	Remember This
	2 divides 'a' and 'b' both.	i. Every point on a number line is associated
	'a' and 'b' have at least 2 as a common factor.	with a unique real number and every real number is associated with a unique point on
	But this contradicts the fact that 'a' and 'b' have no common factor other than 1.	the number line.
	Our assumption that $\sqrt{2}$ is a rational number is	ii. Every rational number is a real number, but
	wrong.	every real number may not be a rational number.
	$\sqrt{2}$ is not a rational number.	iii. The square root of 0 is 0.
4.	Properties of an irrational number:	
	i. $Q \pm Q' = Q'$ ii. $Q \times Q' = Q'$	Practice Set 2.2
	ii. $Q \times Q' = Q'$ iii. $Q \div Q' = Q'$	1. Show that $4\sqrt{2}$ is an irrational number.
	iv. $Q' \pm Q' = Q$ or Q'	Proof:
	v. $Q' \times Q' = Q$ or Q'	Let us assume that $4\sqrt{2}$ is a rational number. So, we can find co-prime integers 'a' and 'b'
	vi. $Q' \div Q' = Q$ or Q'	So, we can find co-prime integers a and b ($b \neq 0$) such that
	Here, $Q = Non$ zero rational number	
	Q' = Non zero irrational number	$4\sqrt{2} = \frac{a}{b}$
Re	al Number	$\therefore \qquad b\left(4\sqrt{2}\right) = a$
		\therefore 32b ² = a ² (i) [Squaring both the sides]
1.	All rational numbers and all irrational numbers together make the set of real	$\therefore \qquad b^2 = \frac{a^2}{32}$
	numbers.	
-	$\mathbf{Q} \cup \mathbf{Q}' = \mathbf{R}$	Since, 32 divides a^2 , so 32 divides 'a' as well.
2.	The set of real numbers is denoted by R.	So, we write $a = 32c$, where c is an integer.

Chapter 2: Real Numbers

$$a^2 = (32c)^2$$
 ...[Squaring both the sides]

- $\therefore \qquad 32b^2 = 32 \times 32c^2 \qquad \dots [From (i)]$
- \therefore b² = 32c²
- \therefore $c^2 = \frac{b^2}{32}$

...

Since, 32 divides b^2 , so 32 divides 'b'.

- \therefore 32 divides both a and b.
- :. a and b have at least 32 as a common factor.

But this contradicts the fact that a and b have no common factor other than 1.

 \therefore Our assumption that $4\sqrt{2}$ is a rational number is wrong.

\therefore $4\sqrt{2}$ is an irrational number.

Alternate Method:

Let us assume that $4\sqrt{2}$ is a rational number. So, we can find co-prime intergers 'a' and 'b' (b $\neq 0$) such that

$$\therefore \qquad 4\sqrt{2} = \frac{a}{b}$$

$$\sqrt{2} = \frac{1}{4b}$$

Since, a and b are integers, $\frac{a}{4b}$ is a rational number and so $\sqrt{2}$ is a rational number.

But this contradicts the fact that $\sqrt{2}$ is an irrational number.

- \therefore Our assumption is wrong.
- \therefore $4\sqrt{2}$ is an irrational number.
- 2. Prove that $3+\sqrt{5}$ is an irrational number. *Proof:*

Let us assume that $3+\sqrt{5}$ is a rational number. So, we can find co-prime integers 'a' and 'b' $(b \neq 0)$ such that

 $3+\sqrt{5} = \frac{a}{b}$

 $\sqrt{5} = \frac{a}{b} - 3$

Since, a and b are integers, $\frac{a}{b} - 3$ is a rational number and so $\sqrt{5}$ is a rational number.

But this contradicts the fact that $\sqrt{5}$ is an irrational number.

This contradiction arises because we have

 \therefore Our assumption that $3+\sqrt{5}$ is a rational number is wrong.

 \therefore 3+ $\sqrt{5}$ is an irrational number.

- 4. Write any three rational numbers between the two numbers given below.
 - i. 0.3 and 0.5
 ii. 2.3 and 2.33
 - iii. 5.2 and 5.3
 - iv. 4.5 and 4.6
- **Ans:** i. -0.4, -0.3, 0.2
 - ii. 2.310, –2.320, –2.325
 - iii. 5.21, 5.22, 5.23

- [Note: The above problem has many solutions. Students may write solutions other than the ones given]
- Let's Study

Root of positive rational number

1. If n is a positive integer and $x^n = a$, then x is the nth root of a. This root may be rational or irrational.

Example: $3^4 = 81$

 \therefore 3 is the fourth root of 81.

Std. IX: Maths (Part - I)

2. If n is an integer greater than 1 and if a is a positive real number, and nth root of a is x, then it is written as $x^n = a$ or $\sqrt[n]{a} = x$.

Surds

1. If a is a positive rational number and n^{th} root of a is x, and if x is an irrational number, then x is called a **surd**. (Surd is an irrational root).

Examples:

- i. $\sqrt{5}$ is a surd. Here, 5 is a positive rational number, 2 is a positive integer greater than 1 and $\sqrt{5}$ is an irrational number.
- ii. $\sqrt[3]{8}$ is not a surd because $\sqrt[3]{8} = 2$, which is not an irrational number.
- 2. In a surd $\sqrt[n]{a}$ the symbol $\sqrt{}$ is called **radical** sign, n is the order of the surd and a is called radicand.

3. Order of a Surd:

Surd $\sqrt[n]{a}$ is said to be of order 'n'. The surd of order 2 is called 'quadratic surd'.

Examples:

- i. $\sqrt{3}$ is a surd of order 2.
- ii. $\sqrt[3]{7}$ is a surd of order 3.
- iii. $\sqrt[4]{15}$ is a surd of order 4.

Simplest form of a surd

Examples: i. $\sqrt{32} = \sqrt{16 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$

ii. $\sqrt{\frac{7}{9}} = \frac{\sqrt{7}}{\sqrt{9}} = \frac{\sqrt{7}}{3}$

Similar or like surds

The surds of the form $p\sqrt{a}$ and $q\sqrt{a}$, where 'p' and 'q' are rational numbers, are called similar surds or like surds.

Example: $\sqrt{3}$, $4\sqrt{3}$, $\frac{2}{5}\sqrt{3}$ are all like surds.

Remember This

In the simplest form of the surds if order of the surds and redicand are equal, then the surds are similar or like surds.

Comparison of surds

Similar surds can be compared by comparing the radicands.

If \sqrt{a} and \sqrt{b} are like surds, then

26

- i. $\sqrt{a} = \sqrt{b}$ if a = bii. $\sqrt{a} > \sqrt{b}$ if a > b
- iii. $\sqrt{a} < \sqrt{b}$ if a < b

Examples:

- a. $\sqrt{5} < \sqrt{7}$ because 5 < 7
- b. $\sqrt{21} > \sqrt{15}$ because 21 > 15
- c. Compare $3\sqrt{5}$ and $\sqrt{7}$

Solution:

 $3\sqrt{5} = \sqrt{9} \times \sqrt{5} = \sqrt{45}$ Here, 45 > 7 $\therefore \quad \sqrt{45} > \sqrt{7}$

 $\therefore 3\sqrt{5} > \sqrt{7}$

Operations on like surds

Mathematical operations like addition, subtraction, multiplication and division can be done on like surds.

Examples:

i.	$3\sqrt{3} + 9\sqrt{3} + \frac{2}{3}\sqrt{3} = \left(3 + 9 + \frac{2}{3}\right)\sqrt{3}$
	$=\left(\frac{9+27+2}{3}\right)\sqrt{3}$
	$=\frac{38}{3}\sqrt{3}$
	$3\sqrt{3} + 9\sqrt{3} + \frac{2}{3}\sqrt{3} = \frac{38}{3}\sqrt{3}$
ii.	$8\sqrt{5} - 4\sqrt{5} = (8-4)\sqrt{5} = 4\sqrt{5}$
iii.	$5\sqrt{3} \times 7\sqrt{3} = 5 \times 7 \times \sqrt{3} \times \sqrt{3}$ $= 35 \times 3 = 105$
	$5\sqrt{3} \times 7\sqrt{3} = 105$
iv.	$21\sqrt{8} \div 3\sqrt{2} = \frac{21\sqrt{8}}{3\sqrt{2}} = \frac{21 \times 2\sqrt{2}}{3\sqrt{2}} = 14$
	$21\sqrt{8} \div 3\sqrt{2} = 14$

Rationalization of surd

1. If the product of two surds is a rational number, then each surd is called the rationalizing factor of the other surd.

Example:

 $\sqrt{27} \times \sqrt{3} = \sqrt{81} = 9$

 \therefore $\sqrt{3}$ is the rationalizing factor of $\sqrt{27}$.

2. Rationalization of denominator:

It is convenient to have the denominator of any fraction as a real number. Rationalizing factor of the surd is used to rationalize the denominator.

3. Rationalize the denominator $\frac{2}{\sqrt{5}}$. **Example:** Solution: Solution: $\frac{2}{\sqrt{5}} = \frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$...[Multiplying the numerator and denominator by $\sqrt{5}$] $\frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$ 4. Solution: **Try This** There are some real numbers written on a .**.**. 1. card sheet. Use these numbers and construct two examples each of addition, subtraction, multiplication and division. Solve these examples. (Textbook pg. no. 34) 1. $2\sqrt{5}$ 12 unique. Example: $3\sqrt{11}$ 5 √7 $9\sqrt{2}$ -11 2. $-3\sqrt{2}$ i. $9\sqrt{2} + 3\sqrt{2} = 12\sqrt{2}$ Ans: i. iii. ii $12-5\sqrt{7} = 12-5\sqrt{7}$ iii. $2\sqrt{5} \times 3\sqrt{11} = 6\sqrt{55}$ v. 13 iv. $\frac{2\sqrt{5}}{9\sqrt{2}} = \frac{2\sqrt{5} \times \sqrt{2}}{9\sqrt{2} \times \sqrt{2}} = \frac{2\sqrt{10}}{9 \times 2} = \frac{\sqrt{10}}{9}$ 1. i. [Note: Students should prepare other examples similar to the ones given and solve them.] iii. _____ v. 2. Follow the arrows and complete the chart by doing the operations given. 3 Ans: i. (Textbook pg. no. 34) 4 iii. Start 3 v. $\sqrt{3}$ 2. $\downarrow \times 2$ $\sqrt{8\times}$ Justify. $4\sqrt{6}$ $2\sqrt{3}$ i. $\frac{1}{1+10\sqrt{6}}$ iii. **14√6** $14\sqrt{2}$ 28 $\div \sqrt{3}$ +3v. √5 × 31 31√5 465 Ans: i. + ÷5 93

Chapter 2: Real Numbers $\sqrt{9+16}$? $\sqrt{9}$ + $\sqrt{16}$ (Textbook pg. no. 28) $\sqrt{9+16} = \sqrt{25} = 5$ $\sqrt{9} + \sqrt{16} = 3 + 4 = 7$ $\sqrt{9+16} \neq \sqrt{9} + \sqrt{16}$ $\sqrt{100+36}$? $\sqrt{100} + \sqrt{36}$ (Textbook pg. no. 28) $\sqrt{100+36} = \sqrt{136} = 2\sqrt{34}$ $\sqrt{100} + \sqrt{36} = 10 + 6 = 16$ $\sqrt{100+36} \neq \sqrt{100} + \sqrt{36}$ From the above examples, $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$ **Remember This** Rationalizing factor of a given surd is not The rationalizing factors of $\sqrt{8}$ are $\sqrt{2}, 2\sqrt{2}, 5\sqrt{2}$, etc. Laws of Surds: If $a, b \in Q$, a, b > 0 and $m, n, p \in N$, then ii. $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$ $\left(\sqrt[n]{a}\right)^n = a$ $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \qquad iv. \qquad \sqrt[m]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[m]{a}} = \sqrt[m]{a}$ vi. $\sqrt[m]{a^n} = (\sqrt[m]{a})^n$ $\sqrt[m]{a^n} = \sqrt[m_p]{a^{np}}$ **Practice Set 2.3** State the order of the surds given below. ∛7 $5\sqrt{12}$ ii. $\sqrt[4]{10}$ iv. $\sqrt{39}$ ∛18 2 ii. 2 iv. State which of the following are surds. $\sqrt[4]{16}$ ∛51 ii. iv. $\sqrt{256}$ ₹81 $\sqrt{\frac{22}{7}}$ ∛64 vi. $\sqrt[3]{51}$ is a surd because 51 is a positive

is: i. $\sqrt[3]{51}$ is a surd because 51 is a positive rational number, 3 is a positive integer greater than 1 and $\sqrt[3]{51}$ is irrational.

			The			
	Std. IX: Ma	aths (Part - I)				
	ii. $\sqrt[4]{16}$ is not a surd because $\sqrt[4]{16} = 2$, which is not an irrational number.				iii.	$\sqrt{250} = \sqrt{25 \times 10} = 5\sqrt{10}$
c 					iv.	$\sqrt{112} = \sqrt{16 \times 7} = 4\sqrt{7}$
	iii.	$\sqrt[5]{81}$ is a surd because 81 is a positive rational number, 5 is a positive integer			v.	$\sqrt{168} = \sqrt{4 \times 42} = 2\sqrt{42}$
		greater than 1 and $\sqrt[5]{81}$ is irrational.		5.		pare the following pair of surds.
c .	iv.	$\sqrt{256}$ is not a surd because $\sqrt{256} = 16$,			i. 	$7\sqrt{2}$, $5\sqrt{3}$ ii. $\sqrt{247}$, $\sqrt{274}$
-	IV.	which is not an irrational number.			iii. v.	$2\sqrt{7}$, $\sqrt{28}$ iv. $5\sqrt{5}$, $7\sqrt{2}$ $4\sqrt{42}$, $9\sqrt{2}$ vi. $5\sqrt{3}$, 9
	V.	$\sqrt[3]{64}$ is not a surd because $\sqrt[3]{64} = 4$,		Salu	vii. <i>tion:</i>	7, $2\sqrt{5}$
		which is not an irrational number.		Solu	i.	$7\sqrt{2} = \sqrt{49} \times \sqrt{2} = \sqrt{98}$
c .	vi.	$\sqrt{\frac{22}{7}}$ is a surd because $\frac{22}{7}$ is a positive				$5\sqrt{3} = \sqrt{25} \times \sqrt{3} = \sqrt{75}$
	, 1.	$\sqrt[3]{7}$ rational number, 2 is a positive integer			.:.	Since, $98 > 75$ $\sqrt{98} > \sqrt{75}$
		greater than 1 and $\sqrt{\frac{22}{7}}$ is irrational.			··· .:.	$\sqrt{98} > \sqrt{75}$ $7\sqrt{2} > 5\sqrt{3}$
_		$\sqrt{7}$				
	3. Clas	sify the given pair of surds into like			ii.	Since, 247 < 274
		ls and unlike surds.			<u></u>	$\sqrt{247} < \sqrt{274}$
	i.	$\sqrt{52}$, $5\sqrt{13}$ ii. $\sqrt{68}$, $5\sqrt{3}$			iii.	$2\sqrt{7} = \sqrt{4} \times \sqrt{7} = \sqrt{28}$
	iii.	$4\sqrt{18}$, $7\sqrt{2}$ iv. $19\sqrt{12}$, $6\sqrt{3}$				Since, 28 = 28
	V.	$5\sqrt{22}$, $7\sqrt{33}$ vi. $5\sqrt{5}$, $\sqrt{75}$			···	$\sqrt{28} = \sqrt{28}$
	Solution: i.	$\sqrt{52} = \sqrt{4 \times 13} = 2\sqrt{13}$			<i>.</i>	$2\sqrt{7} = \sqrt{28}$
	ı.	$\sqrt{52} = \sqrt{4 \times 13} = 2 \sqrt{13}$ $\sqrt{52}$ and $5 \sqrt{13}$ are like surds.			iv.	$5\sqrt{5} = \sqrt{25} \times \sqrt{5} = \sqrt{125}$
C .						$7\sqrt{2} = \sqrt{49} \times \sqrt{2} = \sqrt{98}$
	ii.	$\sqrt{68} = \sqrt{4 \times 17} = 2\sqrt{17}$				Since, 125 > 98
	、 .:	$\sqrt{68}$ and $5\sqrt{3}$ are unlike surds.			<i>.</i>	$\sqrt{125} > \sqrt{98}$
-	iii.	$4\sqrt{18} = 4 \times \sqrt{9 \times 2} = 4 \times 3\sqrt{2} = 12\sqrt{2}$				$5\sqrt{5} > 7\sqrt{2}$
	:.	$4\sqrt{18}$ and $7\sqrt{2}$ are like surds.			v.	$4\sqrt{42} = \sqrt{16} \times \sqrt{42} = \sqrt{672}$
c .	iv.	$19\sqrt{12} = 19 \times \sqrt{4 \times 3} = 19 \times 2\sqrt{3} = 38\sqrt{3}$				$9\sqrt{2} = \sqrt{81} \times \sqrt{2} = \sqrt{162}$
	IV.	$19\sqrt{12} = 19\times\sqrt{4\times 3} = 19\times2\sqrt{3} = 30\sqrt{3}$ 19 $\sqrt{12}$ and $6\sqrt{3}$ are like surds.				Since, $672 > 162$
c .		19912 and 095 are like surus.			÷	$\sqrt{672} > \sqrt{162}$
	v.	$5\sqrt{22}$ and $7\sqrt{33}$ are unlike surds.				$4\sqrt{42} > 9\sqrt{2}$
c -	vi.	$\sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3}$			vi.	$5\sqrt{3} = \sqrt{25} \times \sqrt{3} = \sqrt{75}$
		$5\sqrt{5}$ and $\sqrt{75}$ are unlike surds.				$9 = \sqrt{81}$
-						Since, $75 < 81$ $\sqrt{75} < \sqrt{81}$
	4. Simj	plify the following surds. $\sqrt{27}$ ii. $\sqrt{50}$				$\sqrt{5} < \sqrt{81}$ $5\sqrt{3} < 9$
	iii.	$\sqrt{250}$ iv. $\sqrt{112}$				
	111. V.	$\sqrt{168}$ IV. $\sqrt{112}$			vii.	$7 = \sqrt{49}$ $2\sqrt{5} = \sqrt{4} \times \sqrt{5} = \sqrt{20}$
	V. Solution:	¥ 100				
		$\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$			÷	Since, $49 > 20$ $\sqrt{49} > \sqrt{20}$
	ii.	$\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$			··· .:	$7 > 2\sqrt{5}$
		•	1		••	10

6. Simplify. i. $5\sqrt{3} + 8\sqrt{3}$ ii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ iii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ iii. $9\sqrt{5} - \sqrt{5} + \sqrt{5}$ Solution: i. $5\sqrt{3} + 8\sqrt{3} = (5 + 8)\sqrt{5} = 13\sqrt{3}$ $\therefore 5\sqrt{3} + 8\sqrt{3} = (5 + 8)\sqrt{3} = 13\sqrt{3}$ $\therefore 5\sqrt{3} + 8\sqrt{3} = (5 + 8)\sqrt{3} = 13\sqrt{3}$ iii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 10\sqrt{5}$ $\therefore \sqrt{74} - \frac{3}{\sqrt{7}} - 2\sqrt{7} - \frac{12\sqrt{7}}{5}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$	1	Chapter 2: Real Numbers
ii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ Solution: i. $5\sqrt{3} + 8\sqrt{3} = (5+8)\sqrt{3} = 13\sqrt{3}$ ii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= (0 - 4 + 5)\sqrt{5}$ $= 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= 10\sqrt{5}$ $= 10\sqrt{5}$ iv. $5\sqrt{5} + 2\sqrt{5} = 5\sqrt{2} \times 8^{1/2}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= 10\sqrt{5}$ $= 10\sqrt$	1 2	ii. $3\sqrt{12} \times 7\sqrt{15} = 3 \times \sqrt{4 \times 3} \times 7 \times \sqrt{5 \times 3}$
ii. $-\sqrt{3} = -\sqrt{3} + \sqrt{3} = \sqrt{3}$ iii. $-\sqrt{48} = -\sqrt{27} - \sqrt{3}$ iv. $\sqrt{7} = -\frac{3}{5}\sqrt{7} + 2\sqrt{7}$ Solution: i. $5\sqrt{5} + 8\sqrt{5} = (5+8)\sqrt{3} = 13\sqrt{3}$ ii. $-\sqrt{5} = -\frac{3}{5}\sqrt{7} + 2\sqrt{7}$ iii. $-\sqrt{5} = -\frac{3}{5}\sqrt{7} + 2\sqrt{7}$ iv. $\sqrt{5} = -\frac{4}{5} + \sqrt{125} = 10\sqrt{5}$ iii. $-\sqrt{58} + \sqrt{5} = -6\sqrt{10}$ iv. $5\sqrt{5} \times 2\sqrt{8} = -80$ 8. Divide and write the answer in simplest form. i. $-\sqrt{58} + \sqrt{5} = -6\sqrt{10}$ iv. $-5\sqrt{5} \times 2\sqrt{8} = -8\sqrt{10}$ iv. $-5\sqrt{5} \times 2\sqrt{8} = -\sqrt{5}$ $= -9\sqrt{5} - \sqrt{5} + \sqrt{7} - \sqrt{5}$ $= -9\sqrt{5} - \sqrt{5} - \sqrt{5}$ $= -9\sqrt{5} - \sqrt{5} - \sqrt{5}$ $= -9\sqrt{5} - \sqrt{5} - \sqrt{5}$ $= -7\sqrt{168} - \sqrt{7} - \sqrt{5}$ $= -24\sqrt{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (2\sqrt{7})$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (2\sqrt{7})$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (2\sqrt{7})$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (3\sqrt{5})$ iv. $\sqrt{31} = -\frac{3}{5}\sqrt{5}$ iv. $\sqrt{31} = -\frac{3}{2}\sqrt{5} \times \frac{\sqrt{5}}{5}$ Solution: i. $-\frac{3}{\sqrt{5}} = -\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{5}$ Solution: i. $-\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} - \frac{\sqrt{5}}{5}$ Solution: i. $-\frac{3}{\sqrt{5}} = -\frac{3}{\sqrt{5}} - \frac{5}{5}$ Solution: i. $-\frac{3}{\sqrt{5}} = -\frac{3}{\sqrt{5}} - \frac{5}{5}$	i. $5\sqrt{3} + 8\sqrt{3}$	
iii. $7\sqrt{48} - \sqrt{27} - \sqrt{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ Solution: i. $5\sqrt{3} + 8\sqrt{3} = (5/8)\sqrt{3} = 13\sqrt{3}$ ii. $5\sqrt{3} + 8\sqrt{3} = (5/8)\sqrt{3} = 13\sqrt{3}$ iii. $5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$ iii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{25/5}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{25}$ $= 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{5}$ $= 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{5}$ $= 2\sqrt{5} - \sqrt{5} - \sqrt{5}$ $= 2\sqrt{5} - \sqrt{5} - \sqrt{5}$ $= 10\sqrt{5}$ iv. $5\sqrt{5} \times 2\sqrt{8} = 5\sqrt{2} \times 8$ $= (0 - 4 + 3)\sqrt{5}$ $= 10\sqrt{5}$ iv. $5\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$ iii. $\sqrt{54} + \sqrt{27}$ iv. $\sqrt{125} + \sqrt{50}$ iii. $\sqrt{54} + \sqrt{27}$ iv. $\sqrt{310} + \sqrt{5}$ $= 2\sqrt{5} - \sqrt{5}$ $= 2\sqrt{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5})\sqrt{7}$ $= (2\sqrt{5})$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5})\sqrt{7}$ $= (2\sqrt{5})$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5})\sqrt{7}$ $= 2\sqrt{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5})\sqrt{7}$ $= (2\sqrt{5})$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (3 - \frac{3}{5})\sqrt{7}$ iv. $\sqrt{71} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (3 - \frac{3}{5})\sqrt{7}$ iv. $\sqrt{310} - \sqrt{31}$ iv. $\sqrt{71} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (3 - \frac{3}{5})\sqrt{7}$ iv. $\sqrt{510} = \sqrt{22}$ iv. $\sqrt{125} = \sqrt{12}$ iv. $\sqrt{148} - \sqrt{12} - \sqrt{15}$ iv. $\sqrt{15} = \sqrt{12} - \sqrt{15}$ iv. $\sqrt{148} - \sqrt{15} - \sqrt{15}$ iv. $\sqrt{148} - \sqrt{148} - $	ii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$	
iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ Solution: i. $5\sqrt{3} + 8\sqrt{3} = (5+8)\sqrt{3} = 13\sqrt{3}$ iii. $3\sqrt{8} \times \sqrt{5} = 3 \times \sqrt{4\times2} \times \sqrt{5}$ $= 3 \times 2\sqrt{2} \times \sqrt{5}$ $= 3 \times 2\sqrt{2} \times \sqrt{5}$ $= 6\sqrt{10}$ iv. $5\sqrt{8} \times \sqrt{5} = 6\sqrt{10}$ iv. $5\sqrt{8} \times \sqrt{8} = 80$ 8. Divide and write the answer in simplest form. $1 = \sqrt{10}(5)$ $4\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= 7\sqrt{10}(5)^{3} - \sqrt{5}$ $= 28\sqrt{5} - 3\sqrt{5} - \sqrt{5}$ $= 28\sqrt{5} - 3\sqrt{5}$ $= 28\sqrt{5} - 3\sqrt{5}$ $= 28\sqrt{5} - 3\sqrt{5}$ $= 28\sqrt{5}$ $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5})\sqrt{7}$ $= (3 - \frac{3}{5})\sqrt{7}$ $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18}$ $3\sqrt{12} \times \sqrt{18}$ $3\sqrt{12} \times \sqrt{18}$ $3\sqrt{12} \times \sqrt{18}$ $3\sqrt{12} \times \sqrt{18}$ $3\sqrt{12} \times \sqrt{18}$ $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4x3} \times \sqrt{9x2}$ $= 3 \times \sqrt{5} \times 3\sqrt{2}$ $= 3 \times \sqrt{5}$ $3\sqrt{5}$ $\sqrt{5}$ $3\sqrt{5}$ $\sqrt{5}$ 5	iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$	
Solution: i. $5\sqrt{3} + 8\sqrt{3} = (5+8)\sqrt{3} = 13\sqrt{3}$ ii. $5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$ iii. $5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$ iii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= (9 - 4 + 5)\sqrt{5}$ $= (7 - 5)\sqrt{5} + \sqrt{125} = 10\sqrt{5}$ iii. $\sqrt{148} - \sqrt{27} - \sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3}$ $\therefore \sqrt{17} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= (1 - \frac{3}{5} + \sqrt{7})$ $= (1 - \frac{3}{5} + \sqrt{7})$ =	iv. $\sqrt{7} - \frac{3}{\sqrt{7}} + 2\sqrt{7}$	
i. $5\sqrt{3} + 8\sqrt{3} = (5+8)\sqrt{3} = 13\sqrt{3}$ i. $5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$ ii. $9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{225\times5}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{225\times5}$ $= 9\sqrt{5} - 4\sqrt{5} + \sqrt{225\times5}$ $= 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= 10\sqrt{5}$ iv. $5\sqrt{8} + 2\sqrt{8} = 80$ 8. Divide and write the answer in simplest form. i. $\sqrt{98} + \sqrt{2}$ ii. $\sqrt{125} + \sqrt{30}$ $= 17\sqrt{10(33)} - \sqrt{35}$ $= 28\sqrt{3} - 3\sqrt{5} - \sqrt{3}$ $= (1-\frac{5}{5} + 2)\sqrt{7}$ $= (1-\frac{3}{5} + 2)\sqrt{7}$ $= (1-\frac{3}{5} \sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} - \sqrt{18}$ $3\sqrt{12} - \sqrt{18}$ $3\sqrt{12} - \sqrt{18}$ 3. $\sqrt{12} - \sqrt{18}$ ii. $3\sqrt{12} - \sqrt{18}$ 3. $\sqrt{12} - \sqrt{18}$ iii. $3\sqrt{5} - \sqrt{13}$ $3\sqrt{12} - \sqrt{18}$ 3. $\sqrt{12} - \sqrt{18}$ iii. $3\sqrt{5} - \sqrt{148}$ $\sqrt{14}$ 3. $\sqrt{12} - \sqrt{18}$ iii. $3\sqrt{5} - \sqrt{15}$ iii. $3\sqrt{5} - \sqrt{18}$ 3. $\sqrt{12} - \sqrt{15}$ 3. $\sqrt{12} - \sqrt{18}$ 3.	5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\therefore 5\sqrt{3} + 8\sqrt{3} = 13\sqrt{3}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$9\sqrt{5} - 4\sqrt{5} + \sqrt{125}$	
$= 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5}$ $= (9 - 4 + 5)\sqrt{5}$ $= 10\sqrt{5}$ $\therefore 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5}$ $= (0 - 4 + 5)\sqrt{5}$ $= 10\sqrt{5}$ $\therefore 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5}$ $= 10\sqrt{5}$ $\therefore 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5}$ $= 10\sqrt{5}$ $\therefore 9\sqrt{5} - 4\sqrt{5} + 5\sqrt{5}$ $= 10\sqrt{5}$ $\therefore 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$ $\therefore 7\sqrt{48} - \sqrt{27} - \sqrt{5}$ $= 24\sqrt{5}$ $\therefore 7\sqrt{48} - \sqrt{27} - \sqrt{5} = 24\sqrt{3}$ $\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ $\therefore \sqrt{7} - \frac{3}{5}\sqrt{5}$ $\therefore \sqrt{7} - \frac{3}{5}\sqrt{5}$ $\therefore \sqrt{10} + \sqrt{10}$ $3\sqrt{10} + \sqrt{10}$ 310		
$= 10\sqrt{5}$ $\therefore 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$ iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= 7\sqrt{16\times3} - \sqrt{9\times3} - \sqrt{3}$ $= 28\sqrt{3} - 3\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - 3\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - 3\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - \sqrt{3} - \sqrt{3}$ $= 24\sqrt{3}$ $\therefore 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 24\sqrt{3}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$ $= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$ $= \left(1 - \frac{3}{5} + 2\sqrt{7}\right)$ $= \left(1 - \frac{3}{5} + 2\sqrt{7}\right)$ $= \frac{12\sqrt{7}}{5}$ $\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplex form. $i. 3\sqrt{12} \times \sqrt{18}$ $i. 3\sqrt{12} \times \sqrt{18}$ $i. 3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4\times3} \times \sqrt{9\times2}$ $= 3\times2\sqrt{5} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\frac{6}{\sqrt{3}}$ $\frac{1}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$ $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$ $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$ $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$ $\frac{3\sqrt{5}}{5}$ $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$ $\frac{3\sqrt{5}}{$,	$\therefore 5\sqrt{8} \times 2\sqrt{8} = 80$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8. Divide and write the answer in simplest
$\begin{array}{c} \hline & & & & & & & & & & & & & & & & & & $		
iii. $7\sqrt{48} - \sqrt{27} - \sqrt{3}$ $= 7\sqrt{16\times3} - \sqrt{9\times3} - \sqrt{3}$ $= 7\times4\sqrt{3} - 3\sqrt{3} - \sqrt{3}$ $= 28\sqrt{3} - 3\sqrt{3} - \sqrt{3}$ $= (28 - 3 - 1)\sqrt{3}$ $= 24\sqrt{3}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= (1 - \frac{3}{5} + 2)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4\times3} \times \sqrt{9\times2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ 3. $\sqrt{5} = \frac{3\sqrt{5}}{5}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ 3. $\sqrt{5} = \frac{3\sqrt{5}}{5}$	$\therefore 9\sqrt{5} - 4\sqrt{5} + \sqrt{125} = 10\sqrt{5}$	i. $\sqrt{98} \div \sqrt{2}$ ii. $\sqrt{125} \div \sqrt{50}$
$ \begin{array}{c} = 7\sqrt{16\times 3} - \sqrt{9\times 3} - \sqrt{3} \\ = 7\times 4\sqrt{5} - 3\sqrt{3} - \sqrt{3} \\ = 28\sqrt{3} - \sqrt{3} \\$	iii $7\sqrt{48} = \sqrt{27} = \sqrt{3}$	
$= \frac{7 \times 4\sqrt{3} - 3\sqrt{3}}{23} - \sqrt{3}$ $= \frac{28\sqrt{3}}{3} - \sqrt{3}$ $= \frac{28\sqrt{3}}{3} - \sqrt{3}$ $= \frac{28\sqrt{3}}{3} - \sqrt{3}$ $= \frac{28\sqrt{3}}{3} - \sqrt{3}$ $= \frac{24\sqrt{3}}{3}$ iii. $\frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{50}} = \sqrt{\frac{25\times5}{25\times2}} = \sqrt{\frac{5}{2}}$ iii. $\frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{25\times2}} = \sqrt{\frac{5}{2}}$ $= \frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{50}} = \sqrt{\frac{25\times5}{25\times2}} = \sqrt{\frac{5}{2}}$ iii. $\frac{\sqrt{125}}{\sqrt{5}} = \sqrt{\frac{125}{25}} = \sqrt{\frac{5}{2}}$ $= \frac{\sqrt{125}}{\sqrt{5}} = \sqrt{\frac{125}{25}} = \sqrt{\frac{5}{2}}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ i. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ i. $\sqrt{3}\sqrt{12} \times \sqrt{18}$ i. $3\sqrt{12} \times \sqrt{18}$ i. $3\sqrt{12} \times \sqrt{18}$ i. $3\sqrt{12} \times \sqrt{15}$ ii. $3\sqrt{12} \times \sqrt{15}$ ii. $3\sqrt{12} \times \sqrt{15}$ ii. $3\sqrt{12} \times \sqrt{15}$ ii. $3\sqrt{12} \times \sqrt{18} = 3\times \sqrt{4\times3} \times \sqrt{9\times2}$ $= 3\times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ i. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ i. $3\sqrt{5} = \frac{3\sqrt{5}}{5}$ i. $3\sqrt{5} = \frac{3\sqrt{5}}{5}$ i. $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}$		
$= (28 - 3 - 1)\sqrt{3}$ $= 24\sqrt{3}$ i. $7\sqrt{48} - \sqrt{27} - \sqrt{3} = 24\sqrt{3}$ ii. $\frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{50}} = \sqrt{\frac{25 \times 5}{25 \times 2}} = \sqrt{\frac{5}{2}}$ iii. $\frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{50}} = \sqrt$	$= 7 \times 4\sqrt{3} - 3\sqrt{3} - \sqrt{3}$	1. $\frac{1}{\sqrt{2}} = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}}$
$= 24\sqrt{3}$ $\therefore 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 24\sqrt{3}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ $\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4\times3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ iv. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ iv. $\sqrt{3}\sqrt{5} = \frac{3\sqrt{5}}{5}$ iv. $\sqrt{3}\sqrt{5} = \frac{3\sqrt{5}}{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{18}$ iv. $\sqrt{3}\sqrt{2} = \frac{3\sqrt{5}}{5}$ iv. $\sqrt{3}\sqrt{2} \times \sqrt{18} = 18\sqrt{6}$ iv. $\sqrt{3}\sqrt{2} = \frac{3\sqrt{5}}{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} \times \sqrt{18} = 18\sqrt{6}$ iv. $\sqrt{3}\sqrt{2} = \frac{3\sqrt{5}}{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{3}\sqrt{2} \times \sqrt{18} = 18\sqrt{6}$ iv. $\sqrt{3}\sqrt{2} = \frac{3\sqrt{5}}{5}$ iv. $\sqrt{3}\sqrt{2} = \sqrt{3}\sqrt{5}$ iv. $\sqrt{2}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{2}$ iv. $\sqrt{2}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{2}$ iv. $\sqrt{3}\sqrt{2}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{2}$ iv. $\sqrt{3}\sqrt{2}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{2}$ iv. $\sqrt{3}\sqrt{2}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{2}$ iv. $\sqrt{3}\sqrt{2}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}3$	$= 28\sqrt{3} - 3\sqrt{3} - \sqrt{3}$	125 125 25×5 5
$\therefore 7\sqrt{48} - \sqrt{27} - \sqrt{3} = 24\sqrt{3}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \left(\frac{3}{5} - \frac{3}{5}\right)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ iv. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ iv. $\sqrt{12} \times \sqrt{18} = 18\sqrt{12}$ iv. $\sqrt{12} \times \sqrt{12} \times 12$		ii. $\frac{\sqrt{125}}{\sqrt{50}} = \sqrt{\frac{125}{50}} = \sqrt{\frac{25\times5}{25\times2}} = \sqrt{\frac{5}{2}}$
iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$ $= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \left(\frac{3 - \frac{3}{5}}{5}\right)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ iv. $\sqrt{227} = \sqrt{2}$ iv. $\frac{\sqrt{310}}{\sqrt{25}} = \sqrt{62}$ 9. Rationalize the denominator. i. $\frac{3}{\sqrt{5}} = \sqrt{3}$ iv. $\frac{\sqrt{310}}{\sqrt{5}} = \sqrt{62}$ 9. Rationalize the denominator. i. $\frac{3}{\sqrt{5}} = \sqrt{5}$ iii. $\frac{3}{\sqrt{5}} = \sqrt{5}$ iv. $\frac{3}{\sqrt{5}} = \sqrt{5}$ \dots [Multiplying the numerator and denominator by $\sqrt{5}$] $= \frac{3\sqrt{5}}{\sqrt{5}}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$		
$= \left(1 - \frac{3}{5} + 2\right)\sqrt{7}$ $= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ $\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $= \frac{3\sqrt{5}}{5}$ $= \frac{3\sqrt{5}}{5}$	$\dots 1\sqrt{48} - \sqrt{21} - \sqrt{3} = 24\sqrt{3}$	iii. $\frac{\sqrt{54}}{\sqrt{27}} = \sqrt{\frac{54}{27}} = \sqrt{2}$
$= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\frac{\sqrt{5}}{\sqrt{5}}$ $\frac{\sqrt{5}}{\sqrt{5}}$ $\frac{\sqrt{5}}{\sqrt{5}}$ $\frac{\sqrt{5}}{\sqrt{5}}$	iv. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7}$	·····
$= \left(3 - \frac{3}{5}\right)\sqrt{7}$ $= \frac{12\sqrt{7}}{5}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ iii. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\frac{\sqrt{5}}{\sqrt{5}}$ $\frac{\sqrt{5}}{\sqrt{5}}$ $\frac{\sqrt{5}}{\sqrt{5}}$ $\frac{\sqrt{5}}{\sqrt{5}}$		iv. $\frac{\sqrt{310}}{\sqrt{5}} = \sqrt{\frac{310}{5}} = \sqrt{62}$
$=\frac{12\sqrt{7}}{5}$ i. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ i. $\sqrt{5} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ i. $\sqrt{7} - \frac{3}{5}\sqrt{5}$ i. $\sqrt{3}\sqrt{5} + 2\sqrt{3}\sqrt{5}$ i. $\sqrt{3}\sqrt{5} + 2\sqrt{3}\sqrt{3}\sqrt{5}$ i. $\sqrt{3}\sqrt{5} + 2\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}\sqrt{3}$		
$\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ iii. $\sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$ iv. $\sqrt{7} - \frac{3}{5}\sqrt{7}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times \sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ i. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ iii. $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$	$=\left(3-\frac{3}{5}\right)\sqrt{7}$	
$\therefore \sqrt{7} - \frac{1}{5}\sqrt{7} + 2\sqrt{7} = \frac{1}{5}$ v. $\frac{11}{\sqrt{3}}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times 7\sqrt{15}$ iii. $3\sqrt{8} \times \sqrt{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ v. $\frac{11}{\sqrt{3}}$ Solution: i. $\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $= \frac{3\sqrt{5}}{5}$ $\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$	$= \frac{12\sqrt{7}}{7}$	
$\therefore \sqrt{7} - \frac{1}{5}\sqrt{7} + 2\sqrt{7} = \frac{1}{5}$ v. $\frac{11}{\sqrt{3}}$ 7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times 7\sqrt{15}$ iii. $3\sqrt{8} \times \sqrt{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ v. $\frac{11}{\sqrt{3}}$ Solution: i. $\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $= \frac{3\sqrt{5}}{5}$ $\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$	5	iii. $\frac{5}{\sqrt{7}}$ iv. $\frac{6}{\sqrt{7}}$
7. Multiply and write the answer in the simplest form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times 7\sqrt{15}$ iii. $3\sqrt{8} \times \sqrt{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ Solution: i. $3\sqrt{5} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$ $= \frac{3\sqrt{5}}{5}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ Solution: i. $\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$	$\therefore \sqrt{7} - \frac{3}{5}\sqrt{7} + 2\sqrt{7} = \frac{12\sqrt{7}}{5}$	
simples form. i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times 7\sqrt{15}$ iii. $3\sqrt{8} \times \sqrt{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ ii. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ ii. $3\sqrt{5} = \frac{3\sqrt{5}}{5}$		• -
i. $3\sqrt{12} \times \sqrt{18}$ ii. $3\sqrt{12} \times 7\sqrt{15}$ iii. $3\sqrt{8} \times \sqrt{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ i. $3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ i. $\sqrt{5} = \frac{3\sqrt{5}}{5}$		_
ii. $3\sqrt{12} \times 7\sqrt{15}$ iii. $3\sqrt{8} \times \sqrt{5}$ iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore \sqrt{12} \times \sqrt{18} = 18\sqrt{6}$	-	i. $\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$
iv. $5\sqrt{8} \times 2\sqrt{8}$ Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$		
Solution: i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $= \frac{3\sqrt{5}}{5}$ $\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$		denominator by $\sqrt{5}$]
i. $3\sqrt{12} \times \sqrt{18} = 3 \times \sqrt{4 \times 3} \times \sqrt{9 \times 2}$ $= 3 \times 2 \sqrt{3} \times 3 \sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$		$=\frac{3\times\sqrt{5}}{\sqrt{5}}$
$= 3 \times 2\sqrt{3} \times 3\sqrt{2}$ $= 18\sqrt{6}$ $\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$ $= \frac{3\sqrt{3}}{5}$ $\therefore \frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$		
$\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6} \qquad \qquad$		$=\frac{3\sqrt{5}}{5}$
		$\frac{3}{\sqrt{5}} = \frac{3\sqrt{5}}{\sqrt{5}}$
	$\therefore 3\sqrt{12} \times \sqrt{18} = 18\sqrt{6}$	· · ·

Std. IX: Maths (Part - I)

ii.
$$\frac{1}{\sqrt{14}} = \frac{1}{\sqrt{14}} \times \frac{\sqrt{14}}{\sqrt{14}}$$

...[Multiplying the numerator and denominator by $\sqrt{14}$]
$$= \frac{1 \times \sqrt{14}}{\sqrt{14} \times \sqrt{14}}$$
$$= \frac{\sqrt{14}}{14}$$
$$\therefore \quad \frac{1}{\sqrt{14}} = \frac{\sqrt{14}}{14}$$

iii. $\frac{5}{\sqrt{7}} = \frac{5}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$...[Multiplying the numerator and denominator by $\sqrt{7}$] $= \frac{5 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}}$

$$= \frac{5\sqrt{7}}{\sqrt{7} \times \sqrt{7}}$$
$$= \frac{5\sqrt{7}}{7}$$
$$\frac{5}{\sqrt{7}} = \frac{5\sqrt{7}}{7}$$

 $\frac{11}{\sqrt{3}} = \frac{11}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

 $=\frac{11\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}$

 $=\frac{11\sqrt{3}}{3}$

 $\therefore \qquad \frac{11}{\sqrt{3}} = \frac{11\sqrt{3}}{3}$

...[Multiplying the numerator and

denominator by $\sqrt{3}$]

:.

iv.
$$\frac{6}{9\sqrt{3}} = \frac{6}{9\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

...[Multiplying the numerator and denominator by $\sqrt{3}$]
 $= \frac{6 \times \sqrt{3}}{9\sqrt{3} \times \sqrt{3}}$

Let's Study

Binomial quadratic surd

1. The sum of two numbers, one of which is a quadratic surd and the other is either a non-zero rational number or a quadratic surd is called binomial quadratic surd.

Examples: $\sqrt{5} + \sqrt{3}$, $2 - \sqrt{5}$, $5 - 2\sqrt{11}$

2. Conjugate pair of binomial surds:

If the product of two binomial surds is a rational number, then the two numbers form a conjugate pair of surds.

Example:
$$(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = (\sqrt{5})^2 - (\sqrt{3})^2$$

= 25 - 9
= 16

Hence, $\sqrt{5} + \sqrt{3}$ and $\sqrt{5} - \sqrt{3}$ are conjugate of each other.

Note: The conjugate of $\sqrt{5} + \sqrt{3}$ is $\sqrt{5} - \sqrt{3}$ or $-\sqrt{5} + \sqrt{3}$.

Rationalization of the denominator

The product of conjugate pair of binomial surds is always a rational number. By using this property, the rationalization of the denominator in the form of binomial surd can be done.

Example: Rationalize the denominator $\frac{1}{\sqrt{6}-\sqrt{2}}$.

Solution:

The conjugate of $\sqrt{6} - \sqrt{2}$ is $\sqrt{6} + \sqrt{2}$.

$$\therefore \qquad \frac{1}{\sqrt{6} - \sqrt{2}} = \frac{1}{\sqrt{6} - \sqrt{2}} \times \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}}$$

...[Multiplying the numerator and denominator by $(\sqrt{6} + \sqrt{2})$]

$$= \frac{\sqrt{6} + \sqrt{2}}{\left(\sqrt{6}\right)^{2} - \left(\sqrt{2}\right)^{2}} \qquad \dots [\because (a + b)(a - b) = a^{2} - b^{2}]$$
$$= \frac{\sqrt{6} + \sqrt{2}}{6 - 2}$$
$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

$$= \frac{5 - 2\sqrt{15} + 3}{2}$$

$$= \frac{8 - 2\sqrt{15}}{2}$$

$$= \frac{2(4 - \sqrt{15})}{2}$$

$$= 4 - \sqrt{15}$$

$$\cdot \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} = 4 - \sqrt{15}$$

🚊 Let's Study

Absolute Value

- 1. If x is a real number then absolute value of x is its distance from zero on the number line which is written as |x|, and |x| is read as 'absolute value of x' or 'modulus of x'.
- 2. i. If x > 0, then |x| = x. If x is positive then absolute value of x is x. Example: |5| = 5
 - ii. If x = 0, then |x| = 0. If x is zero then absolute value of x is zero. Example: |0| = 0
 - iii. If x < 0, then |x| = -x. If x is negative then its absolute value is opposite of x. Example: |-3| = -(-3) = 3
- 3. If |x| = a, then $x = \pm a$
 - **Example:** Solve |3x + 1| = 6

Solution:

|3x+1| = 6

- \therefore 3x + 1 = 6 or 3x + 1 = -6
- \therefore 3x = 6 1 or 3x = -6 1
- $\therefore \quad 3x = 5 \qquad \text{or} \quad 3x = -7$
- $\therefore x = \frac{5}{3}$ or x =
- Remember This
- The absolute value of any real number is never negative.

ii.

|4 - 9|

- § Practice Set 2.5
- Find the value.
 - i. |15 2|
- iii. $|7| \times |-4|$

Solution:

1.

- i. |15 2| = |13| = 13
- ii. |4-9| = |-5| = 5
- iii. $|7| \times |-4| = 7 \times 4 = 28$

2.	Solv	e.		
	i.	3x-5 = 1		ii. $ 7 - 2x = 5$
	iii.	$\left \frac{8-x}{2}\right = 5$		iv. $\left 5 + \frac{x}{4}\right = 5$
Solu	tion:			
	i.	3x-5 = 1		
	÷	3x - 5 = 1	or	3x - 5 = -1
	÷	3x = 1 + 5	or	3x = -1 + 5
	÷	3x = 6	or	3x = 4
	<i>.</i>	x = 2	or	$x=\frac{4}{3}$
	ii.	7 - 2x = 5		
	÷	7 - 2x = 5	or	7 - 2x = -5
	÷	7-5=2x	or	7 + 5 = 2x
	÷	2x = 2	or	2x = 12
	÷	x = 1	or	x = 6
	iii.	$\left \frac{8-x}{2}\right = 5$		•
		$\frac{8-x}{2} = 5$	or	$\frac{8-x}{2} = -5$
	<i>.</i> :.	8 - x = 10	or	8 - x = -10
	÷	8 - 10 = x	or	8 + 10 = x
		x = -2	or	x = 18
	iv.	$\left 5 + \frac{x}{4}\right = 5$		
		$5 + \frac{x}{4} = 5$	or	$5 + \frac{x}{4} = -5$
	÷	$\frac{x}{4} = 5 - 5$	or	$\frac{x}{4} = -5 - 5$
		$\frac{x}{4} = 0$	or	$\frac{x}{4} = -10$
	.:	x = 0	or	x = -40

Solution Set − 2

- 1. Choose the correct alternative answer for the questions given below.
 - i. Which one of the following is an irrational number?

(A)
$$\sqrt{\frac{16}{25}}$$
 (B) $\sqrt{5}$
(C) $\frac{3}{9}$ (D) $\sqrt{196}$

- ii. Which of the following is an irrational number?
 - (A) 0.17
 - (B) $1.\overline{513}$
 - (C) 0.2746
 - (D) 0.101001000.....

	Chapter 2: Real Numbers
iii. Decimal expansion of which of the	Hints:
following is non-terminating recurring?	ii. Since the decimal expansion is neither
(A) $\frac{2}{5}$ (B) $\frac{3}{16}$	terminating nor recurring, 0.101001000 is an irrational number.
(C) $\frac{3}{11}$ (D) $\frac{137}{25}$	iii. $\frac{3}{11}$
	$11 \\ 11 = 1 \times 11$
iv. Every point on the number line represent which of the following	Since the denominator is not of the form
numbers?	$2^{m} \times 5^{n}$, the decimal expansion of $\frac{3}{11}$
(A) Natural numbers(B) Irrational numbers	will be non terminating recurring.
(C) Rational numbers	v. Let $x = 0.4$
(D) Real numbers.	$\therefore 10x = 4.4$
v. The number 0.4 in $\frac{p}{p}$ form is	$\therefore 10x - x = 4.4 - 0.4$
q	\therefore 9 <i>x</i> = 4
(A) $\frac{4}{9}$ (B) $\frac{40}{9}$	$\therefore x = \frac{4}{9}$
(C) $\frac{3.6}{9}$ (D) $\frac{36}{9}$	vii. $\sqrt[3]{64} = 4$, which is not an irrational number.
vi. What is n, if n is not a perfect square number?	viii. $\sqrt[3]{\sqrt{5}} = \sqrt[3]{2} = \sqrt[6]{5}$
(A) Natural number	\therefore Order = 6
(B) Rational number	ix. The conjugate of $2\sqrt{5} + \sqrt{3}$ is $2\sqrt{5} - \sqrt{3}$
(C) Irrational number(D) Options A, B, C all are correct.	or $-2\sqrt{5} + \sqrt{3}$
vii. Which of the following is not a surd?	x. $ 12 - (13+7) \times 4 = 12 - 20 \times 4 $
(A) $\sqrt{7}$ (B) $\sqrt[3]{17}$	= 12 - 80 = -68
(C) $\sqrt[3]{64}$ (D) $\sqrt{193}$	= 68
viii. What is the order of the surd $\sqrt[3]{\sqrt{5}}$?	2. Write the following numbers in $\frac{p}{q}$ form.
(A) 3 (B) 2	i. 0.555 ii. 29.568
(C) 6 (D) 5	iii. 9.315315 iv. 357.417417 v. 30.219
ix. Which one is the conjugate pair of $\sqrt{5}$	Solution:
$2\sqrt{5} + \sqrt{3}?$ (A) $-2\sqrt{5} + \sqrt{3}$	i. $0.555 = \frac{0.555 \times 1000}{1 \times 1000} = \frac{555}{1000} = \frac{5 \times 111}{5 \times 200}$
(B) $-2\sqrt{5} - \sqrt{3}$	$=\frac{111}{2}$
(C) $2\sqrt{3} - \sqrt{5}$	200
(D) $\sqrt{3} + 2\sqrt{5}$	ii. Let $x = 29.\overline{568}$ (i)
x. The value of $ 12 - (13+7) \times 4 $ is	Multiplying both sides by 1000,
(A) -68 (B) 68	$1000 x = 29568.\overline{568} \dots (ii)$
(C) -32 (D) 32	Subtracting (i) from (ii), $1000x - x = 29568.\overline{568} - 29.\overline{568}$
Answers: i. (B) ii. (D) iii. (C)	\therefore 999 <i>x</i> = 29539
iv. (D) v. (A) vi. (C)	$\therefore x = \frac{29539}{2022}$
vii. (C) viii. (C) ix. (A)	29539
x (B)	$\therefore \qquad 29.568 = \frac{27007}{999}$

Std. IX: Maths (Part - I)	
iii. Let $x = 9.315315$ $\therefore x = 9.315$ (i)	ii. $\frac{9}{11} = 0.818181$
Multiplying both sides by 1000, $1000x = 9315.\overline{315} \qquad \dots$ (ii)	$\therefore \frac{9}{11} = 0.\overline{81}$
Subtracting (i) from (ii), $1000x - x = 9315.\overline{315} - 9.\overline{315}$	iii. <u>2.23606</u>
$\therefore \qquad 999x = 9306 \\ \therefore \qquad x = \frac{9306}{999} = \frac{9 \times 1034}{9 \times 111} = \frac{1034}{111}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\therefore \qquad 9.315315 = \frac{1034}{111}$	+ 2 - 84 $- 443 - 1600$
iv. Let $x = 357.417417$ $\therefore x = 357.\overline{417}$ (i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Multiplying both sides by 1000, $1000x = 357417.\overline{417} \qquad \dots$ (ii)	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Subtracting (i) from (ii), $1000x - x = 357417.\overline{417} - 357.\overline{417}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\therefore 999x = 357060 \\ \therefore x = \frac{357060}{999} = \frac{3 \times 119020}{3 \times 333}$	$\therefore \sqrt{5} = 2.23606$
$\therefore 357.417417 = \frac{119020}{333}$	iv. $\frac{121}{13} = 9.307692307692$
v. Let $x = 30.\overline{219}$ (i) Multiplying both sides by 1000,	$\therefore \frac{121}{13} = 9.\overline{307692}$
$1000x = 30219.\overline{219} \qquad \dots (ii)$ Subtracting (i) from (ii),	v. $\frac{29}{8} = \frac{29 \times 125}{8 \times 125} = \frac{3625}{1000} = 3.625$
$1000x - x = 30219.\overline{219} - 30.\overline{219}$ $\therefore 999x = 30189$	4. Show that $5+\sqrt{7}$ is an irrational number. Solution:
$\therefore \qquad x = \frac{30189}{999} = \frac{3 \times 10063}{3 \times 333}$ $\therefore \qquad 30 \ \overline{210} = 10063$	Let us assume that $5+\sqrt{7}$ is a rational number. So, we can find co-prime integers 'a' and 'b' (b \neq 0) such that
$\therefore 30.\overline{219} = \frac{10063}{333}$ 3. Write the following numbers in its decimal	$5 + \sqrt{7} = \frac{a}{b}$
form. i. $\frac{-5}{7}$ ii. $\frac{9}{11}$	$\therefore \sqrt{7} = \frac{a}{b} - 5$ Since, 'a' and 'b' are integers, $\frac{a}{b} - 5$ is a rational
iii. $\sqrt{5}$ iv. $\frac{121}{13}$ v. $\frac{29}{8}$	number and so $\sqrt{7}$ is a rational number.
Solution:	But this contradicts the fact that $\sqrt{7}$ is an irrational number.
i. $\frac{-5}{7} = -0.714285714285$ $\therefore \frac{-5}{7} = -0.\overline{714285}$	 ∴ Our assumption that 5+√7 is a rational number is wrong. ∴ 5+√7 is an irrational number.

5.	Writ	e the following surds in simplest form.
	i.	$\frac{3}{4}\sqrt{8}$ ii. $-\frac{5}{9}\sqrt{45}$
Solut	tion:	
	i.	$\frac{3}{4}\sqrt{8} = \frac{3}{4} \times \sqrt{4 \times 2}$
		$=\frac{3}{4}\times 2\sqrt{2}$
	÷	$\frac{3}{4}\sqrt{8} = \frac{3}{2}\sqrt{2}$
	ii.	$-\frac{5}{9}\sqrt{45} = -\frac{5}{9} \times \sqrt{9 \times 5}$
		$= -\frac{5}{9} \times 3\sqrt{5}$
		$-\frac{5}{9}\sqrt{45} = \frac{-5}{3}\sqrt{5}$
6.	Writ	e the simplest form of rationalising
	facto	or for the given surds.
	i.	$\sqrt{32}$ ii. $\sqrt{50}$
	iii.	$\sqrt{27}$ iv. $\frac{3}{5}\sqrt{10}$
~ .		$3\sqrt{72}$ vi. $4\sqrt{11}$
Solut		$\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}$
	i.	
		Now, $4\sqrt{2} \times \sqrt{2} = 4 \times 2 = 8$, which is a rational number.
	.:.	$\sqrt{2}$ is the simplest form of the
		rationalising factor of $\sqrt{32}$.
	ii.	$\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}$
		Now, $5\sqrt{2} \times \sqrt{2} = 5 \times 2 = 10$, which is a rational number.
		$\sqrt{2}$ is the simplest form of the
		rationalising factor of $\sqrt{50}$.
	iii.	$\sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$
		Now, $3\sqrt{3} \times \sqrt{3} = 3 \times 3 = 9$, which is a rational number.
		$\sqrt{3}$ is the simplest form of the
		rationalising factor of $\sqrt{27}$.
	iv.	$\frac{3}{5}\sqrt{10} \times \sqrt{10} = \frac{3}{5} \times 10 = 6$, which is a
		rational number.
	÷	$\sqrt{10}$ is the simplest form of the
		rationalising factor of $\frac{3}{5}\sqrt{10}$.

C

		Chapter 2: Real Numbers
	V.	$3\sqrt{72} = 3\sqrt{36 \times 2} = 3 \times 6\sqrt{2} = 18\sqrt{2}$ Now, $18\sqrt{2} \times \sqrt{2} = 18 \times 2 = 36$, which is a rational number.
		$\sqrt{2}$ is the simplest form of the rationalising factor of $3\sqrt{72}$.
	vi.	$4\sqrt{11} \times \sqrt{11} = 4 \times 11 = 44$, which is a rational number.
		$\sqrt{11}$ is the simplest form of the rationalising factor of $4\sqrt{11}$.
·		
7.	Simp	
	i.	$\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75}$
	ii.	$5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}}$
	iii.	$\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}}$
	iv.	$4\sqrt{12} - \sqrt{75} - 7\sqrt{48}$
	V.	$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$
Solut	tion:	
	i.	$\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75}$
		$= \frac{4}{7}\sqrt{49\times3} + \frac{3}{8}\sqrt{64\times3} - \frac{1}{5}\sqrt{25\times3}$
		$= \frac{4}{7} \times 7\sqrt{3} + \frac{3}{8} \times 8\sqrt{3} - \frac{1}{5} \times 5\sqrt{3}$
		$7 = 4\sqrt{3} + 3\sqrt{3} - \sqrt{3}$
		$= (4+3-1)\sqrt{3}$
		$= 6\sqrt{3}$
	.:.	$\frac{4}{7}\sqrt{147} + \frac{3}{8}\sqrt{192} - \frac{1}{5}\sqrt{75} = 6\sqrt{3}$
	ii.	$5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}}$
		$= 5\sqrt{3} + 2\sqrt{9\times3} + \frac{1\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}$
		$= 5\sqrt{3} + 2 \times 3\sqrt{3} + \frac{\sqrt{3}}{3}$
		$= 5\sqrt{3} + 6\sqrt{3} + \frac{\sqrt{3}}{3}$
		$= \left(5+6+\frac{1}{3}\right)\sqrt{3}$
		$= \left(11 + \frac{1}{3}\right)\sqrt{3}$
		$=\frac{34}{3}\sqrt{3}$
		$5\sqrt{3} + 2\sqrt{27} + \frac{1}{\sqrt{3}} = \frac{34}{3}\sqrt{3}$

Std. IX: M	aths (Part - I)		
iii.	$\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}}$	8. R	ationalize the denominator. $\frac{1}{\sqrt{5}}$
	$= \sqrt{36 \times 6} - 5\sqrt{6} + \sqrt{49 \times 6} - \frac{3 \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}}$	ii.	2
	$= 6\sqrt{6} - 5\sqrt{6} + 7\sqrt{6} - \frac{3\sqrt{6}}{6}$	iii	1
	$= 6\sqrt{6} - 5\sqrt{6} + 7\sqrt{6} - \frac{1}{2}\sqrt{6}$	iv	$3\sqrt{5} + 2\sqrt{2}$
	$= \left(6-5+7-\frac{1}{2}\right)\sqrt{6}$	v. Solution	$4\sqrt{3} - \sqrt{2}$
	$= \left(8 - \frac{1}{2}\right)\sqrt{6}$	i.	
	$= \frac{15}{2}\sqrt{6}$ $\sqrt{216} - 5\sqrt{6} + \sqrt{294} - \frac{3}{\sqrt{6}} = \frac{15}{2}\sqrt{6}$		[Multiplying the numerator and denominator by $\sqrt{5}$]
			$=\frac{1\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}}$
iv.	$4\sqrt{12} - \sqrt{75} - 7\sqrt{48}$ $= 4\sqrt{4\times3} - \sqrt{25\times3} - 7\sqrt{16\times3}$		$\frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$
	$= 4 \times 2\sqrt{3} - 5\sqrt{3} - 7 \times 4\sqrt{3}$ $= 8\sqrt{3} - 5\sqrt{3} - 28\sqrt{3}$	ii.	$\frac{2}{3\sqrt{7}} = \frac{2}{3\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$
	$=(8-5-28)\sqrt{3}$		[Multiplying the numerator and denominator by $\sqrt{7}$]
	$= (-25)\sqrt{3}$ $4\sqrt{12} - \sqrt{75} - 7\sqrt{48} = -25\sqrt{3}$		$= \frac{2 \times \sqrt{7}}{3\sqrt{7} \times \sqrt{7}} = \frac{2\sqrt{7}}{3 \times 7}$
v.	$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}}$		$\frac{2}{3\sqrt{7}} = \frac{2\sqrt{7}}{21}$
	$\sqrt{3} = 2\sqrt{16\times3} - \sqrt{25\times3} - \frac{1\times\sqrt{3}}{\sqrt{3}\times\sqrt{3}}$	iii	i. $\frac{1}{\sqrt{3}-\sqrt{2}} = \frac{1}{(\sqrt{3}-\sqrt{2})} \times \frac{(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})}$
	$= 2 \times 4\sqrt{3} - 5\sqrt{3} - \frac{1}{3}\sqrt{3}$		[Multiplying the numerator and denominator by $(\sqrt{3} + \sqrt{2})$]
	$= 8\sqrt{3} - 5\sqrt{3} - \frac{1}{3}\sqrt{3}$		$= \frac{1 \times (\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}$
G	$= \left(8-5-\frac{1}{3}\right)\sqrt{3}$		$ = \frac{\sqrt{3} + \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} $
	$=\left(3-\frac{1}{3}\right)\sqrt{3}$		$(\sqrt{3})^2 - (\sqrt{2})^2$ [:: (a + b)(a - b) = a^2 - b^2]
	$=\frac{8}{3}\sqrt{3}$		$=\frac{\sqrt{3}+\sqrt{2}}{3-2}$
÷	$2\sqrt{48} - \sqrt{75} - \frac{1}{\sqrt{3}} = \frac{8}{3}\sqrt{3}$		$\frac{1}{\sqrt{3}-\sqrt{2}} = \sqrt{3}+\sqrt{2}$

				Chap	ter 2: Real Num	bers
iv. $\frac{1}{3\sqrt{5}+3}$	$\frac{1}{2\sqrt{2}} = \frac{1}{\left(3\sqrt{5} + 2\sqrt{2}\right)} \times \frac{\left(3\sqrt{3}\right)}{\left(3\sqrt{5}\right)} \times \frac{\left(3\sqrt{3}\right)}{\left(3\sqrt{5}\right)}$ [Multiplying th denominator	,	v		$\frac{12}{(-\sqrt{2})} \times \frac{(4\sqrt{3} + \sqrt{3})}{(4\sqrt{3} + \sqrt{3})}$ ying the numerator initiator by $(4\sqrt{3} + \sqrt{3})$	or and
$= \frac{3}{(3\sqrt{5})}$ $= \frac{3\sqrt{5}}{9\times 5}$	$\frac{-2\sqrt{2}}{-4\times 2}$	$(a-b) = a^2 - b^2$]		$=\frac{12(4\sqrt{3}+\sqrt{2})}{16\times 3-2}=$	$(a+b)(a-b) = a^2$	-b ²]
$= \frac{3\sqrt{5}}{45}$ $\therefore \qquad \frac{1}{3\sqrt{5}} +$	$\frac{-2\sqrt{2}}{5-8} = \frac{3\sqrt{5}-2\sqrt{2}}{37}$	- Multiple Cho	ice Questi	$= \frac{12(4\sqrt{3}+\sqrt{2})}{46}$ $\therefore \frac{12}{4\sqrt{3}-\sqrt{2}} = \frac{6(4\sqrt{3}+\sqrt{2})}{6(4\sqrt{3}+\sqrt{2})}$ ions	$\frac{\sqrt{3}+\sqrt{2}}{23}$	•
rationa (A)	ecimal form of which c al number will be of term $\frac{49}{6}$ (B) $\frac{67}{30}$ (D)	of the following	5. S (((((((((Square root of a negativ A) a real number B) an irrational numb C) not a real number D) a negative numbe Which of the following surds?	r	
	$\frac{p}{q} \text{ form of the rec}$ 686 is $\frac{86}{99} \qquad (B)$ $8686 \qquad (D)$	$\frac{8678}{999}$	((((A) $\sqrt{7}$, $\frac{1}{8}\sqrt{175}$, $-6\sqrt{28}$ (B) $5\sqrt{5}$, $6\sqrt{35}$, $\sqrt{125}$ (C) $\sqrt{11}$, $\sqrt{396}$, $\frac{5}{2}\sqrt{10}$ (D) $\sqrt{8}$, $\sqrt{288}$, $\sqrt{968}$	5	
multip	(D) (D) (D) (D) (D) (D) (D) (D)		((8. T	The rationalizing factor A) $\sqrt{2}$ C) $\sqrt{5}$ The order of the surd $\sqrt[6]{4}$ A) 6	(B) $\sqrt{3}$ (D) $\sqrt{10}$ $\overline{8}$ is (B) $\frac{1}{6}$	
4. Which numbe (A)	√5 (B)	100 10000 Not an irrational $\sqrt{8}$ $\sqrt{16} + 3$	9. 1 ((C) 8 The conjugate of the sum A) $7 + \sqrt{6}$ B) $7 - \sqrt{6}$ C) $-7 - \sqrt{6}$ D) none of these	(D) $\frac{1}{8}$ rd 7 + $\sqrt{6}$ is	
						37

	Std. IX	K: Mat	ths (Part	- 1)								
	10.	The r will ration (A)	numerator have to alise the	r and de be mult denomin	iplied b ator. (B)	or of $\frac{\sqrt{7} + \sqrt{6}}{\sqrt{7} - \sqrt{6}}$ by to $\sqrt{7} - \sqrt{6}$ none of these			The (A) (B) (C) (D)	absolute value of positive negative positive or nega cannot be predi	utive	umber is always
-			ractice S			Additional Pro	oblems		+vi.	$13\sqrt{8} + \frac{1}{2}\sqrt{8} - 5\sqrt{8}$		
			$\frac{1}{5}$ $\frac{223}{400}$	nowing	ii.	$\frac{17}{99}$	4	ŀ.		$8\sqrt{5} + \sqrt{20} - \sqrt{122}$ onalize the denom $\frac{6}{\sqrt{3}}$ $\sqrt{17}$		$\frac{-5}{2\sqrt{5}}$ $\frac{5\sqrt{2}}{3\sqrt{3}}$
:	:	p/q for i. iii.	rm: 0.18 4.7		ii. iv.	7.529	+	-5.	+v. Writ i.	$ \frac{\sqrt{2}}{\sqrt{5}} $ e the simplest for $\sqrt{48}$ iply the surds.	+vi.	$\frac{3}{2\sqrt{7}}$
			0.777 ractice S		+vi.	7.529529529			i.		ii.	$\sqrt{50} \times \sqrt{18}$
			$\sqrt{7}$, $-\sqrt{7}$ that 6 +			e. al number.		-8.	Find	de the surds : $\sqrt{12}$ the rationalizing Practice Set 2.4		$\sqrt{27}$
			that $\sqrt{2}$		tional n	umber.	1	•	Ratio	onalize the denom	ninator.	
-	1.		ractice S which of $\sqrt{961}$ $\frac{1}{\sqrt{15}}$ $\sqrt[3]{8}$		wing are ii. iv. +vi.	e surds. Justify. $\sqrt{-6}$ $3\sqrt{17}$ $\sqrt[4]{8}$			i. iii. +v.	$\frac{6}{2\sqrt{3}+\sqrt{6}}$ $\frac{2\sqrt{5}-\sqrt{2}}{2\sqrt{5}+\sqrt{2}}$ $\frac{1}{\sqrt{5}-\sqrt{3}}$	ii. iv. +vi.	$\frac{5\sqrt{2}}{7-\sqrt{2}}$ $\frac{3\sqrt{2}+2\sqrt{3}}{4\sqrt{2}-3\sqrt{3}}$ $\frac{8}{3\sqrt{2}+\sqrt{5}}$
	7	Comp i. iii. +y.	bare the formation $5\sqrt{6}, 6\sqrt{3}$ $3\sqrt{17}, 19$ $8\sqrt{3}, \sqrt{19}$	$\frac{1}{\sqrt{2}}$	ii. +iv.	surds. $4\sqrt{7}, 5\sqrt{2}$ $6\sqrt{2}, 5\sqrt{5}$ $7\sqrt{2}, 5\sqrt{3}$				Practice Set 2.5 the value. 3-5 $- 3 \times 7 $		15 + -15 $ -3 \times 7 $
C		i.	lify the for $6\sqrt{32} - 8$ $\frac{1}{4}\sqrt{243} + 1$	$\sqrt{72} + \sqrt{24}$					+v. +vii. +ix. +xi.	3 0 8–13 8 × 4	+vi. +viii. +x.	-3 9-5 8 - -3
		iii. +iv. +v.	$\sqrt{5} - \frac{7}{2}\sqrt{3}$ $7\sqrt{3} + 29$ $7\sqrt{3} - 29$		20		2		Solv +i. iii.	e. $ x-5 =2$ $\left 5-\frac{1}{2}x\right =\frac{1}{4}$	ii.	3x-5 =1

Apply your knowledge

1. Draw three or four circles of different radii on a card board. Cut these circles. Take a thread and measure the length of circumference and diameter of each of the circles. Note down the readings in the given table.

No.	radius (r)	diameter (d)	Circum- ference (c)	Ratio = $\frac{c}{d}$
i.	7 cm			
ii.	8 cm			
iii.	5.5 cm			

Ans:

ii.

(Textbook pg. no. 23)

i. 14, 44, 3.1 ii. 16, 50.3, 3.1 iii. 11, 34.6, 3.1

From table, we observe that the ratio $\frac{c}{d}$ is nearly 3.1 which is constant. This ratio is denoted by π (pi). 2. To find the approximate value of π , take the wire of length 11 cm, 22 cm and 33 cm each. Make a circle from the wire. Measure the diameter and complete the following table.

Circle No.	Circum- ference (c)	Diameter (d)	Ratio of (c) to (d)
i.	11 cm		
ii.	22 cm		
iii.	33 cm		

Verify that the ratio of circumference to the diameter of a circle is approximately $\frac{22}{7}$.

The ratio of circumference to the diameter of

(Textbook pg. no. 24)

ii. 7, 22

Ans:

iii.

10.5,

each circle is $\frac{22}{7}$.

Practice Test

- 1. Write the correct alternative answer for each of the following questions. [5]
 - i. A rational number $\frac{p}{q}$ will be terminating

decimal type, only when prime factors of q are

- (A) 2 or 3 (B) 2 or 7 (C) 2 and 5 (D) 5 and 3
- $\frac{p}{q}$ form of 0.3333.... is
 - (A) $\frac{7}{3}$ (B)
 - (C) $\frac{1}{3}$ (D) $\frac{3}{1}$
- iii. Simplest form of surd $\sqrt[4]{48}$ is _____ (A) $2\sqrt[4]{6}$ (B) $4\sqrt[4]{3}$ (C) $2\sqrt[4]{3}$ (D) $2\sqrt[4]{2}$
- iv. Which of the following is a surd? (A) $\sqrt{-5}$ (B) $\sqrt{484}$ (C) $\sqrt{\frac{5}{2}}$ (D) $\sqrt{121}$

- Total marks: 25
- v. The order of the surd $\sqrt[3]{\sqrt[4]{70}}$ is

 - (C) 7 (D) 12
- 2. Attempt the following.

[3]

- i. Write whether the decimal form of $\frac{7}{8}$ would be terminating or non-terminating recurring type.
- ii. Write if the given pair of surds are like or unlike. $\sqrt{20}$, $3\sqrt{5}$
- iii. Multiply: $10\sqrt{3} \times 3\sqrt{3}$

3. Attempt any three of the following. [6]

- i. Compare the surds: $2\sqrt{6}$, $4\sqrt{2}$
- ii. Simplify the surd $\frac{-7}{4}\sqrt{10}$
- iii. Show $\sqrt{10}$ on number line.
- iv. Write the decimal 1.6 in $\frac{p}{r}$ form.

							M				
	Std.	IX: Ma	ths (Part - I)								
	4.		olify any two of t		owing.	[6]	5.	Rationalize th			
			$4\sqrt{8} + \sqrt{32} - \frac{1}{2}$	•				i. $\frac{5}{\sqrt{7}-\sqrt{5}}$			[2]
			$\frac{5}{4}\sqrt{48} - \frac{3}{8}\sqrt{192}$		243			$ii. \qquad \frac{7\sqrt{3}-5\sqrt{3}}{\sqrt{48}+\sqrt{1}}$	$\frac{12}{8}$		[3]
		iii.	$3\sqrt{7} + 7\sqrt{63} +$	$\frac{1}{\sqrt{7}}$							
-						Answ	vers				
					Multip	le Choi	ce Que	estions			
	1.	(D)	2. (B) 3.	(C)	4. (D) 5.	(C)	6. ((B) 7. (C)	8. (A	.) 9. (B) 10. ((A)
	11.	(A)									
					Additiona	l Proble	ems fo	r Practice			
	Base	d on P	ractice Set 2.1								
		i.	0.2	ii.	0.17		iii.	0.5575			
	2	:	2		19			43	:	7522	
	2.		$\frac{2}{11}$	ii.	$\frac{19}{37}$		iii.	$\frac{43}{9}$	iv.	<u>7522</u> 999	
		v.	$\frac{7}{9}$	vi.	$\frac{7522}{999}$						
	Base	d on P	ractice Set 2.3								
			s: iii, iv, v, vi								
	2	i.	$5\sqrt{6} < 6\sqrt{5}$	ii.	$4\sqrt{7} > 5\sqrt{2}$			$3\sqrt{17} < 19\sqrt{2}$	117	6 12 - 5 15	
	2.		$8\sqrt{3} = \sqrt{198}$	vi.	$7\sqrt{2} > 5\sqrt{3}$		111.	5417 < 1942	1.	072 < 575	
		v.	δ γ 3 = γ 19δ	VI.	172 > 573						
	3.	i.	$-14\sqrt{2}$	ii.	$\frac{15}{4}\sqrt{3}$		iii.	$20\sqrt{5}$	iv.	$36\sqrt{3}$	
		V.	$-22\sqrt{3}$	vi.	$17\sqrt{2}$		vii.	$5\sqrt{5}$			
										- [
	4.	i.	$2\sqrt{3}$	ii.	$\frac{-\sqrt{5}}{2}$		iii.	$\frac{\sqrt{34}}{2}$	iv.	$\frac{5\sqrt{6}}{9}$	
		v.	$\frac{\sqrt{5}}{5}$	vi.	$\frac{3\sqrt{7}}{14}$						
	5										
	5. 6.	i. i.	$4\sqrt{3}$	ii. ii.	$7\sqrt{2}$						
	6. 7.	1. 5	7√6	11.	30						
	8.	$\sqrt{3}$									
	40	• -									
		-									

					Î			Cha	apter 2: Real	Numbers
Base	ed on I	Practice Set 2.4								
1.	i.	$2\sqrt{3}-\sqrt{6}$	ii.	$\frac{5\sqrt{2}\left(7+\sqrt{2}\right)}{47}$		iii.	$\frac{11-2\sqrt{10}}{9}$	iv.	$\frac{42+17\sqrt{6}}{5}$	
	V.	$\frac{\sqrt{5}+\sqrt{3}}{2}$	vi.	$\frac{24\sqrt{2}-8\sqrt{5}}{13}$						
Base	ed on I	Practice Set 2.5								
1.	i.	2	ii.	30		iii.	-21	iv.	21	
	v.		vi.	3		vii.	0	viii.	4	
	ix.	5	х.	5		xi.	32			
2.	i.	7, 3	ii.	2, $\frac{4}{3}$		iii.	$\frac{21}{2}, \frac{19}{2}$		V	
				Pr	ractic	e Test	t			
1.	i.	С	ii.	С		iii.	С		С	
1.	I. V.	D	11.	C		111.		iv.	C	
2.	i.	Terminating	ii.	Like surds		iii.	90			
3.	i.	$2\sqrt{6} < 4\sqrt{2}$	ii.	$-\sqrt{\frac{245}{8}}$		iv.	$\frac{5}{3}$			
4.	i.	$7\sqrt{2}$	ii.	$3\sqrt{3}$		iii.	$\frac{169}{7}\sqrt{7}$			
5.	i.	$\frac{5}{2}\left(\sqrt{7}+\sqrt{5}\right)$	ii.	$\frac{114-41\sqrt{6}}{30}$						
	V									

Std.IX

		ENGLISH KUMARBHARATI
fi Los	EXAME	This automn some a matches for in storesmous and grace. With socking freeworking in their law
ब्या रेवे	DÉ risuit	Are likes then
स्रानेवं	ही लेखाई	
SD Lloyer	BETSE MORE THAN KEND	
FORT FOR AN MAL	मार्ड प्रहारको	
0.I. ₁₉₉₆	INTERNITIS 194	
SED. IX Japane	NATHERMATICS 19-1	STD.IX
व्या गणे तकाका	and any case	The annual sector and the sector and
ब्हाको कुछ।	IT: prop	Target Publications Pvt. Ltd.
STD. IX August	SCIENCE AND TECHNOLOGY	8

AVAILABLE SUBJECTS:

- English Kumarbharati
- हिंदी लोकभारती
- हिंदी लोकवाणी
- मराठी अक्षरभारती
- आमीदः (सम्पूर्ण संस्कृतम्)
- आनन्दः (संयुक्त संस्कृतम्)
- Mathematics I
- Mathematics II
- Science and Technology
- History and Political Science
- Geography

BUY NOW

SALIENT FEATURES:

- Extensive coverage of textual and conceptual content
- Ample practice questions to facilitate revision
- Assessments at the end of chapters for self-evaluation
- Solutions to all project based questions given in the textbook
- Exhaustive coverage of grammar and writing skills in Languages
- Exhaustive coverage of concepts in Social Sciences, Maths & Science

88799 39712 / 13 / 14 / 15

- mail@targetpublications.org
- www.targetpublications.org